Naval Research Laboratory

ashmgton, bC 20375-5320

NRL/FR/5510--01-9964

F'ALanguage Use Approach to
Human-Computer Interaction

- DERBK P. BROCK

; ’Nayy Center for Applied Research in Artificial Intelligence

 January 31, 2001

e 20010216 005

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the coilection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) | 2. REPORT DATE

January 31, 2001

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
A Language Use Approach to Human-Computer Interaction

6. AUTHOR(S)

Derek P. Brock

5. FUNDING NUMBERS

PE-0601153N
TA-R4207

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/FR/5510--01-9964

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In this report, elements of Herbert Clark’s theory of language use as a form of joint action are examined as a paradigmatic basis
for the design of human-computer interaction. Particular attention is given to the theory’s characterization of the function and nature
of common ground and the form of joint actions in communicative acts. This is balanced with a presentation of work to develop an
application user interface that employs a cognitive simulation to represent portions of user-computer common ground computationally
as it accumulates in the joint activity of its underlying application task. It is argued that some form of computational modeling of
common ground is imperative in the design of simulated cognition for interactive purposes.

14. SUBJECT TERMS

ACTR Cognitive modeling common ground
Intelligent user interface Joint actions

Language use Levels of action

Task analysis Task modeling tracing

Human-computer interaction
Joint projects
Simulated cognition

15. NUMBER OF PAGES
46

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

|
|
O

Standard Form 288 (Rev. 2-89)
Prescribed by ANS| Std 239-18
298-102

CONTENTS

1. INTRODUCTION 1
1.1 User-Computer Communication ¢ .ttt ittt it ittt e e e e et 1

12 GuidetotheReport e e e 3

2. CLARK’S CHARACTERIZATION OF LANGUAGE USE 3
2.1 Introduction it e e e e e e e e e e e e e 3
2.2 OverviewofLanguage Use o i ittt e e e e 3
2.3 Doing Things Together—Joint Activities i i 5
23.1 Some Generalizations i i e e e e e e e e s 5

232 AFirstLlookatCommonGroundy 6

2.3.3 LanguageinJoint Activities o e 7

2.4 Coordinating Content and Processes—JOInt ACtIONS v o v v v v i s v e 7
24.1 Participationand Coordination e e 8

2.4.1.1 CoordinationProblems e 8

2412 Signaling e e e e e e e 8

242 TheElementof Timing i i e 9

2.5 Moreonthe Natureof CommonGround e 9
2.5.1 A Formal Representationof CommonGround 10

2.5.2 Finding and Building Common Ground 10

2.6 Other Fundamental Notions in Language Use 11
2.6.1 Speaker’s MeaningandLevelsof Action, 12

2.6.2 Proposing and Takingup JointProjects, 13

2.7 Elements of Language Use in Human-Computer Interaction. 14

3. TASK MODEL TRACING 15
31 Imtroduction i i it e e e e e e e e e e e e e e e e 15
3.2 Simulating CognitioninaUserInterface 16
33 ACT-R e e e e e e e e e e e 18
3.3.1 Procedural and Declarative Knowledge 19

3.3.2 Rational Analysis and Subsymbolic Processingin ACT-R 20

3.4 The Task Model Tracing System v i i i i it et e e s e e e e e 21
3.4.1 A Brief Description of the ApplicationTask 22

342 TaskModelFunctions ittt e 22

343 ModelTracing o o v v et e e e e e e e e e e e e e e e e e e 26

344 Task Analysisand Task Modeling, 26

3.4.5 A Description of the Full SysteminOperation 32

3.4.5.1 Basic Model Tracing Activities e 32

3.45.2 Presentation Functions—Reporting, Advising, and Doing 34

3.453 Summary of the System’sOperation 36

3.5 Common Ground in Task Model Presentations—Two Examples 37

4. CONCLUSIONS 40
4.1 A Review of the Human-Computer Interaction Design Goals for the Task Model Tracing System . . . 40
4.2 Future Work and Acknowledgements e e e 42
REFERENCES 43

iii

A LANGUAGE USE APPROACH TO HUMAN-COMPUTER INTERACTION

1. INTRODUCTION
1.1 User-Computer Communication

Users regularly face the challenge of getting a computer to do what they want it to do. This can mean anything
from having to locate an obscure program feature, to wrestling with an elaborate series of interactions, to simply not
knowing what to do next. Although it is true that such problems often arise in part from a lack of attention to various
human factors and usability principies in a program’s design, the fact remains that even the best user interfaces have
fundamental shortcomings that are directly related to the limits of their abilities to communicate well with users in the
sense that people are generally able to communicate well with each other (cf. Norman, 1992, ch. 11). For instance,
programs are rarely designed to actively anticipate their users’ varying concerns, or to monitor and recognize what
their users are doing or are trying to do. Nor are they routinely able to summarize an activity, much less to keep
track of it in a meaningful way in order to verify a user’s understanding of one part or another. Even with the benefit
of carefully designed aids, such as user manuals and online help (e.g., Shneiderman, 1998 and Sellen and Nicol,
1990), users in situ very often find they are on their own when it comes to puzzling out a program’s more elaborate
features and abilities, or when they must grapple with a new or difficult task. In complex or mission-critical systems,
a program’s communicative shortcomings may very well be one of its most crucial deficiencies.

Nevertheless users and computers do form a true communicative partnership because interactions between them
rely on an exchange of information. Human-computer interaction amounts to a language in which, at a minimum,
computers are told what they are to do and users expect to be told what the computer has done* (in fact, much more than
just this occurs). Consider that the characteristic activity people and computers engage in is information processing
(Simon and Kaplan, 1989). Indeed, computers are remarkable for the breadth of interactivity they can support and
the fact that their processing is fundamentally computational, as opposed to mechanistic. More importantly though,
computers, like people, are able to maintain flexible representations of knowledge, and this sets them apart from all
other complex devices of human design (cf. Kay, 1984).

How then are the communicative shortcomings of user interfaces to be improved? As the power of computer
systems has grown, there has been a surge of interest in approaches to this problem. It has, for instance, been widely
pointed out that communication between people is regularly supported by actions occurring in nonlinguistic channels,
and that there are many potential advantages to exploiting such modes of expression in human-computer interactions
(e.g., Sullivan and Tyler, 1991; Laurel, 1990; and Maybury, 1993). What is most important though is not the medium
of interaction—natural language, graphical display, etc.—but the nature of the information processing that supports
the content of interactions. It is hardly necessary for people and computers to literally speak to each other, but it would
be a significant step forward for user interfaces to be able to remember, reason about, and respond to interactions much
as a person would.

Hence this report proposes that a large part of the answer lies directly in our understanding of how people commu-
nicate with each other and what it is that they do when they use language. In his 1996 book, Using language, Herbert
Clark (1996b) makes a compelling argument for the claim that “language use is really a form of joint action.” In joint

*“The working definition of the human-computer interaction research group at the U.S. Naval Research Laboratory reads, “[Human-computer in-
teraction] can be viewed as the bi-directional communication of information between two powerful information processors: people and computers.”
(http://elazar.itd.nrl.navy.mil)

Manuscript approved May 17, 2000

2 Derek Brock

actions, people coordinate with each other to accomplish shared purposes that are part of their broader ends in joint
activities. In particular, all joint activities advance through the accumulation of common ground—the knowledge, be-
liefs, and suppositions that people bring to, keep track of, and share about an activity. Clark’s thesis sets out a coherent
theoretical framework for understanding much of what communicative acts involve, and in the work presented here,
human-computer interaction is approached not as a device use problem (Norman, 1986) but as a type of bona fide joint
activity in which humans and computers are viewed as the participants.

This report’s title, “A Language Use Approach to Human-Computer Interaction,” is chosen to convey, in the
broadest sense, what enters into any form of joint activity. Clark describes joint activities as a basic category that
encompasses all participatory circumstances in which conventional language plays a role. More to the point, he notes,
“If we take language use to include such communicative acts as eye gaze, iconic gestures, pointing, smiles, and head
nods—and we must—then all joint activities rely on language use” (Clark, 1996b, p. 58). For Clark, language in its
linguistic sense is simply one of many possible signaling systems, some highly organized and others spontaneously
improvised. The insight is that coordination in all purposeful joint activities requires some form of signaling. And
indeed, much of what constitutes the public character of human-computer interaction is merely a set of signals derived
from acts of pointing and clicking, typed commands entered through a keyboard, and processed information displayed
on a screen.

But what does it really mean to take a language use approach to human-computer interaction? What distinguishes
joint activities from other endeavors is common ground. Evidence of it is present in everything people design to
be used by others and in everything people do together. What is being proposed by saying that human-computer
interaction can be viewed as a type of joint activity is that the computer as an information processing agency is to be
taken seriously in its role as a communicant. Well designed application user interfaces exhibit their common ground
with users through their use of metaphor, consistency, affordances, and so on (e.g., Erickson, 1990; Tognazzini,
1990; and Norman, 1988). In addition, they should be designed to support their common ground with users. People
accumulate and maintain common ground so that they have a means—a language—for coordinating and advancing
their activities with others. Ideally, it should be no different in the design of human-computer interaction. To the
extent that it is possible or practical, the basis of joint activities between humans and computers should be designed to
resemble our understanding of the basis of joint activities between people.

Common ground is both knowledge and process. As a knowledge basis for the design of conventional user inter-
faces, a determination of user-computer common ground should influence all facets of the display and the interaction
design. The designer, through an analysis of the task domain as a joint activity, should think in terms of what every
component of the user interface will communicate to the user, and seek to anticipate information the user will need to
coordinate the task activity with the computer (cf. Norman, 1992, ch. 17). User-centered design approaches (Norman,
1986) strive for a similar result, but not through a principled interrogatory framework based on the notion of common
ground. Menus, dialogues, entry points, help messages, and so on, all serve as coordination devices—as a language—
offered by the user interface for carrying out the joint activity of the task. When considered in terms of common
ground, the shortcomings and strengths of the design of these components are more clearly revealed and understood.

Common ground also has clear process implications for user interfaces. As joint activities progress, common
ground accumulates—at least in users it does. Remarkably, it also accumulates in ordinary programs, to some de-
gree, but seldom in ways that resemble its characteristics in people. In people, common ground develops entirely in
cognition, whereas in conventional user interfaces, it accumulates through what are at best ad hoc and often obscure
processes such as preferences, changes in the display, and/or history and undo mechanisms. Ideally, users should be
able to confer with a program at any time and get responses that are perceptive and relevant. What user interfaces
need are additional mechanisms that serve this function, whose role is to interpret and facilitate what is going on in
the joint activity in ways that have meaning for the user.

Interfaces incorporating such mechanisms are, in fact, already beginning to appear, not only in research laborato-
ries (e.g., Rich and Sidner, 1998), but also in commercial products (e.g., Horvitz et al., 1998). The role of common
ground is so intuitive and fundamental in interactive activities that it is always present in one form or another, whether
or not it has been fully recognized or accounted for in a design. In this view, so called “intelligent user interfaces”
are interfaces that take the computer’s potential role in task activities seriously enough to have been crafted to go

A Language Use Approach to Human-Computer Interaction 3

significantly beyond conventional reflexive or stimulus-response designs. By employing computational mechanisms
that make context sensitive inferences or that recognize patterns of behavior, and so on, these interfaces accumulate
and use aspects of common ground in ways that users presumably recognize as being more consistent with their own
internal representations of activities.

Nevertheless, it is the process component of common ground in user interfaces that is least understood and often
least appreciated, and at present, there are only a few candidate mechanisms for its implementation. In this report, the
problem is examined through the computational paradigm of cognitive modeling, the presumption being that a theory
of human cognition is relevant to a theory of language use between people. Although there are practical strengths and
weaknesses to this particular computational strategy, it does provide clear evidence that a language use approach to
human-computer interaction is merited.

1.2 Guide to the Report

The work presented here draws in multidisciplinary fashion from three different fields that are themselves multi-
disciplinary—human-computer interaction, processes in language use, and cognitive science. It hardly needs saying
that the challenges faced in each of these areas of inquiry are substantial, and that in each there is still much that is
as much art as science. As a student and a researcher, my introduction to cognitive modeling and various results in
cognitive science led to my interest in cognitively augmented user interfaces. My subsequent introduction to Clark’s
body of work provided a coherent framework—a language—for crystallizing these ideas and characterizing the issues.

This report has two substantive goals. The first, as background, is to provide an introductory review of Clark’s
theory of language use as joint action, choosing for emphasis material that is relevant to the nature of human-computer
interaction. Some of the the implications of Clark’s work in the context of user interfaces are briefly examined as part
of this review. All of this material is presented in Section 2. The second goal, presented in Section 3, is to describe
a cognitive modeling approach to the active representation of common ground called “task model tracing.” In task
model tracing, a computational theory of human cognition known as “ACT-R” (Anderson and Lebiere, 1998) is used
by an application user interface as the basis for simulating the accumulation and use of elements of user-computer
common ground in the joint activity of a portion of the application’s task. Section 4 of the report presents a high-level
summary review and a description of future work.

2. CLARK’S CHARACTERIZATION OF LANGUAGE USE

2.1 Introduction

In his monograph Using language (1996b), Herbert Clark gives a persuasive account of language use as a form
of joint action—what emerges when people coordinate their individual actions with others. Coordination requires
communicative acts to come into play, and this leads to notions of common ground, meaning and understanding,
levels of action, and to the essence of what language itself is, signaling. People do things together, and yet they act as
individuals. Ultimately in the study of language use, the notion of joint actions cannot be separated from the individual
actions that comprise them.

This section presents a summary introduction to Clark’s notions about the nature of language use as background
material that is intended to motivate the modeling work presented in Section 3. With the exception of Section 2.7, all
of the material in this part of the report (i.e., Section 2) has been drawn from Clark (1996b). Aspects of the theory
that are deemed relevant to the nature of human-computer interaction have been emphasised, although this has not
been generally noted in context to preserve the clarity of the exposition. The presentation is greater than should be
necessary to apprehend the immediate goals of the task model tracing effort, but its length is merited by the richness
of the theory, and the belief that the additional material will be useful in subsequent modeling and/or design efforts.

2.2 Overview of Language Use

Clark begins by remarking that “Language is used for doing things.” And it is. It is used to carry out what people
do together, when they are with each other and when they are apart. It is used to do anything that has a social purpose.

4 Derek Brock

In doing things together, people participate in a special kind of activity, a joint action. Joint actions occur whenever
individuals choose to act in some form of coordination with each other, regardless of the details or the circumstance.
Just as two people waltzing or shaking hands constitute joint actions, so do the activities that emerge when people
correspond or simply converse.

Activities involving language use occur in a wide range of spoken and written settings, or some mix of the two.
Settings can be characterized in various ways, as personal, fictional, mediated, and so on, but the most basic setting of
language use is always face-to-face conversation. Nonbasic settings lack one or more of the natural features of face-
to-face conversation related to immediacy, medium, or control that are listed in Table 1. When any of these features
are missing, people are always forced to resort to using different skills and procedures to accommodate their absence.

Table 1 — Features of Face-to-Face Conversations

Features related to immediacy:

1 Copresence The participants share the same physical environment.

2 \Visibility The participants can see each other.

3 Audibility The participants can hear each other.

4 Instantaneity The participants perceive each other’s actions at no perceptible delay.
Features related to medium:

5 Evanescence The medium is evanescent—it fades quickly.

6 Recordlessness The participants’ actions leave no record or artifact.

7 Simultaneity The participants can produce and receive at once and simultaneously.
Features related to control.

8 Extemporaneity The participants formulate and execute their actions extemporaneously, in real

time.

9 Self-determination The participants determine for themselves what actions to take when.

10 Self-expression The participants take actions as themselves.

Reprinted (with modifications) from Clark, Using language, pp. 9-10, © 1996 Cambridge University Press

In any setting where language is used, people variously assume the roles of speaker and addressee.” Others may
be present, but not as addressees or participants. Speakers intend for their addressees to understand an address and to
act on that understanding. They know further that this depends entirely on addressees taking a number of actions on
their own. Addressees know they have to listen, watch, and otherwise attend when they are being addressed, and that
they must try to make sense of this information and understand it. In managing to coordinate all of these actions with
respect to each other, what emerges is both a joint action and a use of language.

Joint actions are, by definition, social actions, and social actions cannot be coordinated without a basis of shared
knowledge—common ground. When language comes into play, not only is the action itself coordinated, but so also
are the notions of speaker’s meaning and addressee’s understanding. Speakers convey meaning with signals—any
conspicuous action deliberately performed for others—their addressees—to identify. Speakers devise their signals out
of what they believe is common ground, intending that their references to it will be recognized by their addressees; in
this way, meaning and understanding arise.

Language use also has layers of action. All of the joint actions that speakers and addressees carry out as themselves
take place in the primary layer, whereas actions with meaning that transcends the participants’ literal circumstances
occur in a secondary layer or higher. This notion of layering accounts for the creation of conversational roles for
persons not present and similarly for removes in time and/or place.

* A terminological note: Much of what is ordinarily called “language” is inescapably linguistic in character, and Clark frequently uses linguistic
examples and the term speaker to illustrate a point. Nevertheless, he notes that, “At least in the notion of ‘language use,’ [language] must include
every method by which one person means something for another.”” Hence, by speaker, he intends, more broadly, the notion of signaler or presenter.

A Language Use Approach to Human-Computer Interaction 5

A distinguishing characteristic of the actions individuals take in joint actions is their participatory as opposed to
autonomous nature. Participatory actions inherently make reference to the actions of other participants. The individual
actions themselves may be, and often are, very different from each other, but they nevertheless lack full autonomy.

The joint actions that result when speakers and addressees use language as themselves in the primary layer of
action are not just atomic events. Instead, they are what emerge from a process that is made up of levels of tightly
paired, subsidiary joint actions. Sounds must be vocalized and heard, utterances must be formulated and identified,
and meaning must be intended and understood. Component joint actions build upon each other, and each has a specific
role that is essential in the overall process of language use. In nonbasic settings, these levels of joint action can and
do become decoupled. The joint action in which speaker’s meaning and addressee’s understanding arise, though, is
privileged—it is what defines language use.

Coming full circle, a further characteristic of language use is a product of the fact that language is used for doing
things. Deliberate actions have consequences that are both intended and also unintended. When consequences are
intended, the product is said to be anticipated; when they are not, the product is said to be emergent. Many of the
regularities of language use emerge unanticipated and unintended. In Table 2, six propositions summarize Clark’s
working assumptions in this overview of language use.

Table 2 — Six Propositions about Language Use

Proposition 1. Language fundamentally is used for social purposes.

Proposition 2. Language use is a species of joint action.

Proposition 3. Language use always involves speaker's meaning and addressee’s understanding.
Proposition 4. The basic setting for language use is face-to-face conversation.

Proposition 5. Language use often has more than one layer of activity.

Proposition 6. The study of language use is both a cognitive and a social science.

Reprinted (with modifications) from Clark, Using language, pp. 23-24, © 1996 Cambridge University Press

2.3 Doing Things Together—Joint Activities

Language use in joint activities is secondary to the activity itself; it is a means to an end, an emergent product, not
what the activity is about. And yet the two are inseparable. People cannot do things together without communicating—
using language in the broadest sense—and this means that one cannot be understood without the other.

Joint activities are fundamentally different from what people do on their own autonomously. They are social
activities, bounded in time or ongoing, but distinguished by having more than one participant. The many ways in
which joint activities differ can be thought of as varying on a variety of dimensions such as scriptedness, formality,
and verbalness. Two dimensions that are particularly useful in understanding what goes on in language use are
cooperativeness, the degree to which an activity is collective vs adversarial, and governance, the degree to which
an activity is egalitarian vs autocratic.

2.3.1 Some Generalizations

In doing things together, people assume activity roles. A nonparticipant in one activity may be a participant in an
enclosing activity. Roles arise from an activity’s nature and ratify participation. Along with personal identities, they
shape much of the making of an activity—who does what and why.

Joint activities serve the goals their particpants pursue and hope to achieve. Some goals are public and others
private. Each has consequences for the conduct of the activity. More often than not, a variety of goals are being
pursued at the same time, some related and some not. Joint activities usually have an obviously dominant goal, but
their participants may also have procedural and interpersonal goals, among others. Like any other information, goals
become public when they become openly recognized in one form or another. A joint activity is defined by its joint
goals, and these are always public. Private goals are kept from others largely for reasons of expedience.

6 Derek Brock

How people coordinate what they do with each other is central to how language is used. In joint activities, people
do this with mixes of conventional and nonconventional procedures that are themselves made up of fixed and/or
negotiated hierarchies of smaller joint activities or actions. For each part or phase of the process to work, participants
need to be mutually confident of each other’s engagement, and this means contriving their entries and exits from one
part to the next and ultimately for the whole activity. Any of a variety of dynamics may also come into play. Activities
overlap, pause, divide, expand, and so on. Table 3 summarizes the points made in this section.

Table 3 — Some General Claims about Joint Activities

Participants A joint activity is carried out by two or more participants.

Activity roles The participants in a joint activity assume public roles that help determine their division of
labor.

Public goals The participants in a joint activity try to establish and achieve public goals.

Private goals The participants in a joint activity may try to achieve private goals.

Hierarchies A joint activity ordinarily emerges as a hierarchy of joint actions or joint activities.

Procedures The participants in a joint activity may exploit both conventional and nonconventional proce-

dures.
Boundaries A successful joint activity has an entry and exit jointly engineered by the participants.
Dynamics Joint activities may be simultaneous or intermittent, and may expand, contract, or divide in

their personnel.
Reprinted (with modifications) from Clark, Using language, pp. 37-38, © 1996 Cambridge University Press

2.3.2 A First Look at Common Ground

Clark contends that all joint activities advance through their participants’ accumulation of common ground—the
knowledge, beliefs, and suppositions each assumes they share about an activity. The study of common ground and its
accumulation has previously been limited to its occurrence in discourse. The broader view—that it accumulates in all
joint activities—follows naturally from the notion that language use is a form of joint action.

People bring presuppositions to their participation in joint activities. Their public actions during an activity and
possibly other occurrences in the activity’s environment can be thought of as state-changing events. Not all states and
events, though, are taken by the participants to be part of the activity in an official sense. As the state of an activity
changes, its participants’ presuppositions are cumulatively modified. An activity’s common ground is made up of
these presuppositions, and at any point in most activities they can be divided into the three parts described in Table 4.

Table 4 — Three Parts of Common Ground

1. Initial common ground. This is the set of background facts, assumptions, and beliefs the participants presup-
posed when they entered the joint activity.

2. Current state of the joint activity. This is what the participants presuppose to be the state of the activity at the
moment.

3. Public events so far. These are the events the particpants presuppose have occurred in public leading up to
the current state.

Reprinted (with modifications) from Clark, Using language, p. 43, © 1996 Cambridge University Press

The first part of common ground—initial common ground—can be, and usually is, vast. Onc of its most useful
characteristics in many situations is its participants’ shared knowledge of applicable information, such as cultural
norms and procedures.

People’s ongoing sense of the second part of common ground—the current state of the joint activity-—begins from
the moment they enter into the activity itself. This sense of state includes the participants’ awareness of who is doing

A Language Use Approach to Human-Computer Interaction 7

what and the status of their various goals in the joint activity. This part of common ground is frequently aided from
moment to moment by the actual state of objects in the participants’ immediate physical environment. Beyond their
simple physical existence, objects and scenes in the world are routinely used as external representations of what is
often a highly developed, shared understanding. Board games capture the essence of the idea. Table 5 describes some
of the properties of external representations that make them so useful in joint activities. Three other points can be
made about external representations. Because they are features of the physical environment, they are highly reliable
for purposes of joint reference. They are also useful for participants as a mental aid, not only for purposes of recall,
but also as a medium for reasoning forward. Finally, because of their tangible nature, external representations are
often the medium of the joint activity itself.

Table 5 — Some Properties of External Representations

1. Physical model. The scene of a joint activity can be used by its participants as a physical model of the activity
that can be viewed, touched, and manipulated.

2. Markers. Features of and in external representations can be markers that denote elements of the joint activity.

3. Location interpretation. The spatial location of markers in an external representation can be a factor in the
interpretation of these markers.

4. Manipulability. The movement or alteration of markers can also be a factor in their interpretation.

5. Simultaneous and parallel accessibility. All participants generally have access to and can consult the scene of
a joint activity.

Paraphrased from Clark, Using language, pp. 46~47, © 1996 Cambridge University Press

In keeping track of the third part of a joint activity’s common ground—the public events so far—people rely on
what they already know about what they are doing to help them identify what has happened. The result is an annotated
record of single events and purposeful sequences expressed in personal terms. As events recede, people go on to form
more broadly expressed outline records by abstracting away details.

Pragmatically, people keep track of common ground in joint activities so that they have a reasonable sense of what
their counterparts know. But people’s internal representations of things are common ground only to the extent that they
correspond with each other. What doesn’t correspond isn’t common ground. Inevitably, representations of common
ground fail to correspond in many ways. Often these discrepancies go undetected, but when they are discovered,
people tend to correct them immediately to avoid coping with the consequences.

2.3.3 Language in Joint Activities

Conventional language, whether spoken or written, is used regularly in the conduct of joint activities. But
verbalness—the degree of an activity’s linguistic character—is simply a dimension by which joint activities can vary.
A telephone conversation is almost entirely a linguistic activity whereas waltzing is almost entirely nonlinguistic.
These two extremes suggest a kind of discourse continuum. Somewhere in the middle it becomes undeniably apparent
that a text of the verbal component in joint activities cannot meaningfully stand alone. Without a record of the larger
joint activity, any words participants use begin to lose a portion of their coherence. When conventional language is
separated from the circumstances in which it occurs, the result is artificial—something is lost. The full record of a
joint activity is a full record of all of its communicative acts—all of the signaling and coordination that occurs, as
well as any conventional language that comes into play. If conventional language is taken to be simply one of many
possible forms of communicative acts, acts in which speaker’s meaning and addressee’s understanding play a role, a
broader understanding of the notion of language use emerges. Language use can now be seen as present throughout
the discourse continuum and, indeed, all joint activities can be seen to depend on it.

2.4 Coordinating Content and Processes—Joint Actions

When people decide to do something together, it becomes necessary for them to coordinate their actions as indi-
viduals with respect to each other. What emerges from these acts of coordination are sequences of joint actions—the

8 Derek Brock

components of joint activities. To carry out a joint action, the action’s participants must work out both what they
intend to do and how they are going to do it. More often than not, each of these considerations affects the other in an
opportunistic way. The cognitive and/or physical processes each person employs usually depend on the joint action’s
content—what it is they are trying to do together. Similarly, the content itself may have to be reshaped, depending on
what processes are available. In these respects, the nature of joint actions is the nature of language use.

2.4.1 Participation and Coordination

In Clark’s view, what technically distinguishes joint actions from other kinds of actions is their participatory
nature. Joint actions are participatory in the sense that more than one person is involved and each is pursuing the
same purpose in a cooperatively coordinated manner. According to this view, a joint action’s participants must all
intend to be doing their respective parts and believe that the joint action itself includes both their own and each other’s
intentions and beliefs. Noncooperative or deceptive actions between people are not taken to be joint actions (even
though they may involve the participation of more than one person, such as in a game), and neither are actions in
which an individual acts autonomously with respect to the actions of another.

2.4.1.1 Coordination Problems

What is key in joint actions is the element of coordination. Joint actions are really solutions to coordination
problems that come about when people’s concerns are in some way coincident and meeting them requires cooperative
action. Indeed, this is the essence of language use. To solve coordination problems, people require a jointly salient
basis for coordinating their expectations of each other. This basis, referred to as a coordination device, can be virtually
anything that will allow the participants in a joint action to arrive at a mutual supposition or expectation of what their
own and each other’s part in the action should be. Such mutual expectations arise from the participants’ current
common ground. A robust coordination device is something that is not only known to all of the people facing a
coordination problem, but also indicates to all of them that they all know that something, and that that something
indicates their mutual expectation. The role of salience and common ground in solving coordination problems leads
to a principle of joint salience—The solution to a coordination problem among two or more agents is the solution that
is most salient, prominent, or conspicuous with respect to their current common ground (Clark, 1996b, p. 67).

Participants in joint actions have a vested interest in posing coordination problems to each other in ways that can
be solved. In such participant coordination problems, all participants should be able to take it for granted that the one
who has posed the problem has not only chosen it and worked out its presentation, but is also anticipating a specific
solution and expects that this solution can be readily discerned by everyone involved. This being the case, participants
should also be able to assume that the information conveyed in the presentation, in conjunction with their common
ground, is sufficient to identify the problem’s intended solution. When time is a constraint, they can further assume
that the solution will be one that is immediately apparent. These assumptions are respectively referred to as premises
of solvability, sufficiency, and immediacy.

Joint actions that arise in language use most commonly take the form of participant coordination problems. Explicit
agreements and conventions are good examples of coordination devices that are ideal solutions for these problems
because they are straightforward in nature. Agreements preempt the need to work out other solutions, and conventions
solve coordination problems that are recurrent.

2.4.1.2 Signaling

At an even more basic if abstract level, in trying to communicate, people must first manage to coordinate what
is meant by one person and understood by another. Engineering the more fundamental joint action that achieves this
coupling between speaker’s meaning and addressee’s understanding is a crucial participant coordination problem in
all instances of language use. Ideally, what is needed are whole systems of coordination devices to serve as bases for
this particular type of joint action, and this is exactly what signaling systems such as conventional languages are. In
essence, when a signal is presented, a participant coordination problem is posed: a speaker means something for an
addressee to understand. Signals can be devised from any sort of coordination device that is effective. As long as the

A Language Use Approach to Human-Computer Interaction 9

the signal is a part of or can be related to what is salient in both the speaker’s and the addressee’s common ground,
each can presuppose that the understanding (the solution) the addressee will come to is what the speaker intended.

In sending and receiving signals, speakers and addressees rely on the existence of contingency plans in their
common ground. A fundamental part of these contingencies are pairs of rules or heuristics called signaling doublets
that can be used to pose and decipher participant coordination problems. A speaker, for instance, may know that a
hand sign or a word can be used to denote such-and-such when one or the other is presented, and know or expect that
his or her addressee knows this too. Correspondingly, when the same hand sign or word is perceived, if the addressee
does happen to know that it can denote the same such-and-such and believes that his or her speaker knows this too,
then he or she has a basis for deciphering the signal and thus understanding the speaker’s meaning.

Users of languages such as English, rely on many forms of conventional signaling doublets including lexical en-
tries, grammatical rules, and various conventions of use and perspective. Such conventions abstract the rules and
regularities of a language, but not the wooliness of its actual use. Nonconventional coordination problems inherently
arise in all forms of joint action—and hence in language use—and their solutions depend on participants’ commu-
nicative skills—their ability to reason in terms of joint salience, solvability, sufficiency, and immediacy. Traffickers
in meaning and understanding invariably must cope with such irregularities as ambiguity, contextuality, indexicality,
and layering, and only through nonconventional means can such participant coordination problems be solved. Indeed,
nonconventional coordination devices such as explicit agreements, reliance on perceptual saliences, and the use of
precedents all repeatedly arise and succeed as a result of participants’ natural resourcefulness, their confidence in their
presuppositions about each other’s communicative skills, and what is common ground between them.

2.4.2 The Element of Timing

Joint actions are themselves composed of smaller acts of coordination that continuously unfold in time. Although
participant actions may be balanced or unbalanced—that is, each person may be doing essentially the same thing or
one may be leading while the others follow—the process of coordinating the content of joint actions must itself be
coordinated. Timing and cognitive resources are always issues in presenting a coordination problem, in discerning its
solution, and in rendering a response. Speakers and addressees must continuously coordinate each other’s attention
and be able to project the moment when each successive part of the joint action should begin and end. According
to this view, joint actions can be thought of as being made up of hierarchies of synchronously coordinated phases.
Each phase is a segment of joint action with a single functional purpose that is bounded by a jointly executed entry
point, body, and exit. People employ various strategies for continuously engineering this synchrony. In joint actions
that are rhythmic or periodic, phase exits naturally coincide with phase entries, so a simple cadence strategy can be
used to predict phase durations and thus each successive entry point. Phase exits and entries can also be coincident
when, as is more often the case, joint actions are aperiodic but contiguous, such as in joint activities like conversation.
When this pattern holds, a similar but more general entry strategy can be adopted as long as phase entry points are
jointly salient and can easily be projected from the nature of the body of each preceding phase. This same strategy
becomes a boundary strategy when entries and exits are not coincident. Particularly in coordinating aperiodic joint
actions, participants derive their ability to project a phase’s duration from their experience with the substance and
character of its body. In conversation, for instance, addressees continuously monitor the intonation of the speaker’s
voice, the syntax of his or her presentation, and other characteristics of the presentation, in order to project the current
phase’s duration. It is also a given—a part of each conversant’s common ground—that such monitoring processes
and the process of understanding take time. Processing is in fact a significant part of the joint action that speakers
and addressees simultaneously carry out. Making allowances for processing time goes both ways in all joint actions,
and people develop robust heuristics for estimating its demands and for interpreting what it says about each other’s
capacities and state of mind.

2.5 More on the Nature of Common Ground

What distinguishes information that is common ground for a group of people from any other information they
may unwittingly hold in common is their mutual awareness of each other’s possession of the first kind of information.
In other words, while two or more agents are unaware of each other’s knowledge of the same information, that
information necessarily lies outside of their common ground. But this state of affairs changes when the agents learn

10 Derek Brock

of each other’s possession of the same information. Now they can confidently appeal to their knowledge of what they
know together to coordinate joint actions involving this matter, whereas before it would have been presumptuous and
possibly counterproductive for either to have attempted to use this particular information as a coordination device.

2.5.1 A Formal Representation of Common Ground

Section 2.3.2 informally characterized the notion of common ground as the “knowledge, beliefs, and suppositions”
participants each assume they share about an activity, and Table 4 enumerated how the contents of common ground
can be divided into three parts at any moment. These parts are an attempt to conceptualize the essential components of
each individual’s representation of the context of the moment with regard to his or her counterparts. More to the point,
included in the whole of each of these representations is not only the individual’s sense of his or her own awareness
of whatever the situation might be, but just as importantly, his or her sense of the corresponding awarenesses of any
others involved. Very broadly, it is the acquisition of this sense of others’ awareness that promotes common ground.
In doing anything together, people require an explicit, shared basis to indicate any proposition they take to be a part
of their common ground with each other. Ultimately any such basis must arise from one individual’s confidence in
another’s ability to be aware of and use this basis, and vice versa. This insight leads to a formal representation of the
nature of common ground Clark denotes as “CG-shared”:

Common ground (shared basis)

Proposition p is common ground for members of community C if and only if:
1. every member of C has information that basis b holds;
2. bindicates to every member of C that every member of C has information that b holds;
3. b indicates to members of C that p.

Reprinted (with modifications) from Clark, Using language, p. 94, © 1996 Cambridge University Press

In this representation, the phrase “has information” is intended to encompass a range of synonymous terms such as
“believes.” “sees)” “is aware.” or “knows,” and the term “community” is used to imply a plurality of members. CG-
shared’s second condition emphasizes that any basis for an element of common ground must be explicitly known
to be shared by all members of the immediate community in question—be it large or small. In a broader sense,
when b is taken to be each individual’s perceptual awareness, this condition’s reflexive character (its self-reference)
also succinctly expresses the nature of what it is to be in community with others wherein an individual’s awareness

includes both an awareness of self and an awareness of an analogous awareness in others.

Although it is possible to represent common ground in another reflexive form that deals only with p and sidesteps
the role of a shared basis, the representation made by CG-shared is both more comprehensive and more fundamental.
A mutually held proposition p’ can easily be supported by inequivalent, unshared bases #; and b5, but the correct char-
acterization of this circumstance is not that p’ is nevertheless common ground but that b, and b- in not being shared
do not justify p’ as common ground. Experience teaches that holding different bases encourages misunderstandings,
hence the following principle of justification: In practice, people take a proposition to be common ground in a com-
munity only when they believe they have a proper shared basis for the proposition in that community (Clark, 1996b,
p- 96).

What is individually taken to be common ground, though, is an inherently subjective matter. Individuals must
evaluate every potential shared basis in terms of both the common ground it indicates and its quality of evidence—
how well it justifies a given proposition. According to the principle of shared bases, for something to be a coordination
device, it must be a shared basis for a piece of common ground (Clark, 1996b, p. 99). Thus, any supposedly shared
basis that is poor evidence for a difficult or dubious inference will likely make a weak coordination device because
it has little likelihood of indicating the intended solution to others. To succeed in coordinating their joint actions,
individuals have a vested interest in striving to find or contrive the most robust shared bases possible.

2.5.2 Finding and Building Common Ground

Shared bases are so fundamental to the broad conduct of cultural activities that entire communities of individuals
can be said to be defined around them. By consensus, members of such cultural communities can assume that they

A Language Use Approach to Human-Computer Interaction 11

share what is called inside information, a richer knowledge of their community’s concerns than would be possessed by
anonmember. Their inside knowledge is a form of shared expertise that is outside information for others. Membership
is a powerful shared basis. People display their own and look for evidence of others” membership in the various cultural
communities to which they belong because their joint interests and agendas are so greatly facilitated when they can
establish this communal common ground with others.

Many different forms of information are characteristic of communal common ground. People’s shared knowledge
of their basic human nature and the properties of the natural world in which they live are perhaps most fundamental.
More definitive are communal lexicons, histories and facts, and other cultural conventions such as a community’s
norms and procedures. In addition to this are a community’s unique perspectives and experiences, many ineffable,
that constitute it’s most exclusive inside information. Another characteristic associated with communal common
ground is people’s generally robust ability to accurately grade the degree to which they share information with others
based on such cues as their awareness of how one community is related to another and their personal intuitions and
assessments of their own and each other’s informational capacities.

In addition to communal common ground, people rely on a broad class of shared bases that arise from their personal
experiences with each other. For the most part, the experiences that make up an individual’s personal common ground
with others are either naturally occurring joint perceptual experiences or joint actions. A shared perceptual basis is
anything jointly perceived as it is, whose salience may be indicated by its obviousness or by observing another’s
attention or gesture. Ordinarily, any such instance of perceptual copresence—witnessing the same thing together—
satisfies each of the conditions of CG-shared. Perceptual bases are said to have natural meaning because they are
not contrived but are instead naturally occurring. What a joint perceptual experience is specifically taken to mean,
however, generally depends on the communal common ground of the individuals perceiving it.

Inferring personal common ground from the shared basis of a joint action also depends on the communal common
ground of the individual participants. In contrast to perceptual experiences, though, joint actions are said to have
non-natural meaning because they are intentional events and rely on signaling in order to be carried out. Once the
signal meaning of a joint action has been conveyed and understood, its significance can be taken to be common ground
among the participants. Engineering such events so that they too satisfy the conditions of CG-shared is a fundamental
process in using language.

Shared bases for personal common ground are autobiographical in nature and often include personal lexicons.
They also play a defining role in determining who is a friend, an acquaintance, or an intimate, and who is a stranger—
generally, the greater the personal common ground between two people, the greater the acquaintance.

Indeed, any degree of common ground that may exist between people must be established and built up in their
encounters with each other. Various forms of circumstantial and episodic evidence become the shared bases for
inferences of common ground. Such evidence can be intentionally or unintentionally disclosed, but it is necessary for
this to be explicitly recognized by each of the parties involved for it to establish any facet of their common ground.
Ultimately, common ground develops in layers. Each new stratum always relies in some way on an earlier piece.

2.6 Other Fundamental Notions in Language Use

In the preceding sections, many of the broad fundamentals of Clark’s characterization of language use have been
set out. People engage in joint activities in order to do things together, and in pursuit of their social ends, they
inevitably must find ways to communicate with each other. Language, in its broadest sense, solves this problem by
enabling one person to convey his or her intention to another and achieve its recognition. To carry this out, people
participate in acts of jointly coordinated reasoning that take advantage of the fact that individuals possess reasonably
similar conceptions of the world in which they live. This particular kind of joint action is essential to people’s joint
activities. It is not only how they get others to understand what they mean but also how they come to know what they
have in common—how they establish their common ground. In joint actions, people pose their intentions to each other
by proffering elements of their common ground as a signal basis for recognizing what those intentions are. It is then
incumbent on audiences to make these connections, and their willingness to coordinate with their counterparts in this
way is what makes communicative actions joint actions. As these interactive experiences accumulate, so do people’s

12 Derek Brock

knowledge of each other, thereby enlarging their common ground—the shared basis that makes their joint endeavors
possible. Still, there are a few additional points that should be made, particularly in regard to joint actions. For Clark,
this participatory process is central in language use.

2.6.1 Speaker’s Meaning and Levels of Action

On closer inspection, the notion and role of meaning in the use of language is a bit more subtle than might be
expected. Meaning in the sense of one person trying to indicate something for another to understand is fundamentally
different from the intrinsic or symptomatic meaning everyday things in the world have by virtue of their inherent
nature. This distinction, which is due to Grice (1957), divides meaning into two types (mentioned earlier in Sec-
tion 2.5.2)—respectively, non-natural meaning and natural meaning. Both come into play in different ways in joint
actions and in language. Because natural meaning is, in effect, self evident, its primary role in language use is com-

monly that of a tacitly recognized element in the common ground of the moment in people’s joint activities, though
" it may also play other roles. Non-natural meaning, in contrast, is distinguished by its association with the notion of
signaling. Its role is central in joint actions.

Non-natural meaning itself has two components—speaker’s meaning and signal meaning. The difference between
the two is the difference between what a person intends to be understood when he or she presents a signal and what that
signal may mean per se. Speaker’s meaning is inherently precedential because signal meaning can only arise from use.
But speaker’s meaning can only be conveyed when an effort is made to understand it. That is, the meaning intended
by a speaker can only be recognized when the intention that it be recognized is itself recognized by addressees who
then must do their part. The principle is that communicative acts are inherently participatory and necessarily entail
both signaling and recognizing. Clark’s formal representation of the joint nature of speaker’s meaning reflects this:

Speaker's meaning (joint)

In presenting signal s to audience A, speaker S means for A that proposition p if and only if:
0. the communicative act r includes 1 and 2;
1. S presents s to A intending that p as part of r;
2. A recognizes that p as part of r.

Reprinted (with modifications) from Clark, Using language, p. 131, © 1996 Cambridge University Press

The fact that speakers, in signaling, intend for their audiences to perform a corresponding act of recognition means
that in communicative acts, speakers are making a kind of proposal. Very often, in fact, they specifically want their
addressees to do something more—and seemingly, they are trying to accomplish all of this through the mere action
of their presentations or utterances. Such utterances, linguistic or otherwise, are called speech acts (Austin, 1962).
If a speaker can get a listener to recognize his or her meaning, the effect is called an illocution. If through this
understanding a speaker can get the listener to take some further action, even if unintended, the effect is a perlocution.
An Illocution may stand on its own but perlocutions are always accompanied by illocutions, and what these terms
describe is the discharge of speaker’s meaning in one form or another. Hence, and more to the point, illocutionary
and perlocutionary acts cannot be accomplished without specific cooperative responses from the listener—responses
that complete specific joint actions. Speakers are in effect beholden to their addressees to complete what they are
proposing.

As it turns out, speakers and addressees must do quite a bit together to carry out a communicative act. What at
first appears to be one joint action is actually a hierarchy of several essentially contemporaneous joint actions. This
is hinted at in the way perlocutions depend on illocutions. Such hierarchies are termed action ladders because they
can be decomposed into series of causally ordered, metaphorically ascending levels of action. Action ladders are
ubiquitous in daily life, and speakers and addressees carry out prototypical examples. A speaker or signaler must
execute a sign in order to present the sign in order to signal with the sign in order to propose one thing or another.
Similarly, an addressee or a recognizer must attend to a sign in order to identify the sign in order to recognize the
sign’s meaning in order to consider responding. The upward causality that is seen in such action ladders defines an
ordering that is irreflexive, asymmetric, and transitive. Two properties follow from this that people intuitively depend
on and use. The first is the property of upward completion: In a ladder of actions, it is only possible to complete
actions from the bottom level up through any level in the ladder (Clark, 1996b, p. 147). The other is the property of

A Language Use Approach to Human-Computer Interaction 13

downward evidence: In a ladder of actions, evidence that one level is complete is also evidence that all levels below
it are complete (Clark, 1996b, p. 148). When the actions that signalers and recognizers carry out at each level in
their respective action ladders are taken for what they properly are—pairwise parts of specific, order-dependent joint
actions in a communicative act—an action ladder of joint actions emerges that exhibits the same upward causality and
the properties of upward completion and downward evidence:

Level4 Proposal and consideration
Level3 Signaling and recognizing, or meaning and understanding
Level2 Presenting and identifying
Levelt Executing and attending
Reprinted (with modifications) from Clark, Using language, p. 153, © 1996 Cambridge University Press

2.6.2 Proposing and Taking up Joint Projects

Level 4 in the ladder of joint actions described above is something that goes beyond meaning and understanding.
It is the entertainment of what Clark calls a joint project—a joint action projected by one of its participants and taken
up by the others (Clark, 1996b, p. 191). The object of this top-level joint action is to move the participants’ real
concerns—their official business—a step further along. But for an addressee to complete the joint action begun at
level 4, he or she needs to have already completed the transaction at level 3. That is, the addressee must already have
understood or construed enough of what the speaker’s intentions are to formulate a viable response. Although full
construals are not always possible or easy to make, in responding, an addressee both agrees in some way to take up a
joint project and comes forth with evidence of the measure of his or her understanding. In the event of a misconstrual,
the addressee may need the speaker’s help. To be sure, construals are a problem for both parties in a joint project.
Together, they must settle on what the speaker means, and this is called the joint construal problem.

Construals are fundamental to making sense of things. From the most basic inferences of natural meaning to the
most difficult exercises of comprehension, construals account for most of what people understand—and do. Indeed,
people often signal their construals publicly in order to display to others the nature of their attitudes, their conclusions,
and what they understand in any number of social contexts. And so it is with speakers and addressees in their commu-
nicative acts and joint projects. Signaling actions that are meant for others are often met by or paired with responses
that are intended in part to indicate construals. Such responses are usually open to evaluation. Construals can be right
or wrong or somewhere in between; they may be nominally flawed or their flaws may go undetected. How a speaker
subsequently intervenes or moves on helps to settle the joint construal problem that proceeds from his or her initial
utterance.

The action-response pair pattern just described is indispensable in joint activities. Joint construals can only be
achieved by comparing notes, as it were, and from this, such turn-taking naturally emerges. Just as important, though,
are the larger, moment-to-moment concerns of the joint activity itself, the joint projects carried out at level 4 that
presuppose joint construal at level 3. Proposals and their consideration and uptake also require two-part exchanges, and
when action-response pairs are employed for joint projects, they have the following properties and are characterized
as adjacency pairs:

1. Adjacency pairs consist of two ordered actions—a first part and a second part.
2. The two parts are performed by different agents A and B.
3. The form and content of the second part is intended, among other things, to display B's construal of the first
part for A.
4. The first part projects uptake of a joint task by the second part.
Reprinted (with modifications) from Clark, Using language, p. 201, © 1996 Cambridge University Press

Adjacency pairs efficiently solve two of the problems participants in joint projects face at once—how to conduct
business (property 4) and how to settle on what they are doing (property 3). In particular, by the property of downward
evidence in the ladder of joint actions in communicative acts, an addressee’s uptake can be taken as evidence of his
or her understanding. As the smallest of possible joint projects, the proposal and uptake pattern of adjacency pairs
is ideal for carrying out joint actions with a minimum of joint effort. It establishes who the participants are and

14 Derek Brock

implicitly defines their roles, it helps the participants to coordinate the entry times of their joint actions’ phases, and it
standardizes a means for jointly introducing, construing, and otherwise acting on the content of their joint actions—
their official business.

Finally, there is the role of purpose to be considered in joint projects. The purpose of any joint project is to
accomplish something, but what that something is must be jointly worked out by its participants who must then
demonstrate their commitment with their actions. In particular, there are these requirements:

For A and B to commit themselves to joint purpose r

1. Identification A and B must identify r

2. Ability It must be possible for A and B to do their parts in fulfilling r

3. Wiillingness A and B must be willing to do their parts in fulfilling r

4. Mutual belief A and B must each believe that 1, 2, 3, and 4 are part of their common ground
Reprinted (with modifications) from Clark, Using language, p. 203, © 1996 Cambridge University Press

Somewhat like joint construals, joint purposes must also be settled on if these requirements are to be met. When a
respondent fails to proceed or agree to a mutual purpose in full or in part, he or she is invariably unable or unwilling
to do so. Because all of these requirements are subject to negotiation, each participant has a role in determining what
joint purpose a joint project will serve, whether the project is minimal, in the case of adjacency pairs, or extended.
Indeed, extended joint projects are just the emergent enterprises of lesser joint projects opportunistically engineered
to serve larger purposes though chaining, embedding, and other tactics. In particular, what actually transpires in most
joint activities is as much a bending of agendas as it is anything else. Clark notes that in reaching joint construals,
what the speaker means is principally replaced by what the participants mutually agree to take the speaker as meaning.
An uptake will often signal which of several construals an addressee is willing to entertain. And so individual agendas
and joint purposes change and adapt.

2.7 Elements of Language Use in Human-Computer Interaction

In its essence, Clark’s theory of language use is a theory of how people solve the problem of doing things with
each other. Beginning with their earliest face-to-face encounters, people acquire and refine a complex but consistent
body of communicative skills that becomes one of their greatest assets in life, serving them in one capacity or another
in virtually every setting in which language use plays a role. Until relatively recently, it could also be taken for granted
that these skills were uniquely reserved for doing things with people.” However, with the rise of technologically
sophisticated information processing machinery in this century, this assumption has been challenged—at least in
practical terms. Increasingly, people are entering into activities with machines that have much of the character of their
joint activities with people. While it is correct to say that people autonomously use tools, machines, and machine-based
systems because they have been designed to amplify or facilitate human limitations or implement codified processes,
etc., it is nevertheless the case that many human-computer interaction events supported by user interfaces are, in effect,
communicative acts between users and computers. That is, many systems are designed not just to interact reflexively
with users, but to work at times with their users in ways that strongly resemble the manner in which a “real agent”
would work.

This last point was raised by Clark in his plenary address to the Association for Computing Machinery’s 1996
Conference on Human Factors in Computing Systems (CHI ’96) in Vancouver, Canada. In the short paper that ac-
companied his talk (Clark, 1996a),! he argued that minimal joint projects between people (i.e., adjacency pairs) are
of interest in the design of human-computer interaction because “they have long been the model for communication
with and through machines” People have “systematic, economical, and robust” ways of solving the difficulties that
arise in arranging to do things with each other, and these techniques are employed to coordinate even the smallest of
joint actions that advance their larger joint activities. In analogous joint activities with computers and other interactive
technologies, people intuitively try to adapt these same skills to advance their machine-supported tasks. Hence, an
understanding of the underlying principles at work in people’s socially based communicative acts is needed if their
corresponding skills are to be successfully supported in the design of interactive systems.

*To some extent, companion animals could arguably be included here, too.
t All quoted material in this section is from Clark (1996a).

A Language Use Approach to Human-Computer Interaction 15

To support the argument that interaction designs regularly anticipate people’s communicative skills, Clark provides
a number of common examples in which a proposal plus its uptake—what defines a minimal joint project—is used
as the paradigm for implementing transactions between users and machines and vice versa. He is careful to point
out that such instances are only genuine joint projects when the technology is used as a medium for conveying one
person’s intent to another, such as in ringing a telephone. In contrast, joint projects that involve machine-initiated
proposals or machine-driven responses only have “the look and feel” of the real thing. These designs succeed, however,
because users “know what to do...by analogy with genuine joint projects.” Indeed, the chief rationale for a range of
interaction techniques supported by graphical user interfaces is that they too are self-evident, or are quickly learned,
by analogy with direct manipulations people carry out in the real world. However, when interfaces reflexively and/or
metaphorically represent user inputs as autonomous actions that appear to be entirely under the user’s control, such
events would not seem to qualify as joint projects, in spite of the machine’s invisible support of the metaphor. Rather,
joint projects in machine interaction designs have the functional character of adjacency pairs, and when user interfaces
fail to adequately leverage or coordinate any of the terms people ordinarily try to establish before they enter into joint
actions, the user experience is certain to be less than optimal.

The points that Clark raises concerning the applicability of principles of language use to human-computer interac-
tion have implications that go well beyond the introductory examples he provides. Cognition plays a role in virtually
every joint action people enter into, and many of its underlying processes are poorly understood and/or simulated or
are entirely absent in current interaction designs. As Clark notes, “It takes delicate coordination against the common
ground of the participants to initiate [joint] actions.” This is particularly true in the conduct of extended joint projects.
When these cognitive skills are effectively unavailable, the range of expression and common ground in the conduct
of joint activities can be severely limited. If user interfaces are to achieve greater fluency in this regard, it will be
necessary for researchers, technologists, and designers to identify and deploy machine-based methodologies that are
capable of simulating the cognitive skills people regularly employ in their face-to-face projects with each other, as
well as in other settings in which language use plays a role. In the next section of this report, a modeling effort with
this agenda is described.

3. TASK MODEL TRACING
3.1 Introduction

Common ground entails both knowledge and process. When people and computers come to a task, they both
begin with a certain amount of background information. For people, this is a body of presuppositions they have about
a number of things, such as the task, the computer, their role as a computer user, and the task’s real-world context.
Altogether, this is a representation that serves as the basis for how they will proceed. In principle, the situation is
much the same for computers. The structure, design, and data underlying an application and its user interface embody
a design team’s presuppositions about many of the same issues—the task, the computer, the user, etc. And this
too is a representation; it stands on its own and determines how the application software will proceed. These two
complementary representations are necessary if users and computers are to do things together. And the ways in which
they correspond and overlap constitute the user’s and the program’s initial common ground.

The knowledge component of common ground is a picture of an activity’s state of affairs—what each of its par-
ticipants presupposes is jointly known about each other and what they are doing together at the moment. The process
component, in contrast, determines how the knowledge component is shaped. As the joint activity of human-computer
interaction advances, each participant’s knowledge changes through a process of accumulation. Users ruminate and
keep track of the computer’s actions and their own, and this accumulating information is steadily added to their rep-
resentation of the activity. Programs also change their representation of things as activities advance. Their displays
change and internal states change and their stored data are modified. For the program, many of these changes are
informed by what are expected to be the user’s needs—information about the program’s part in the activity that the
user will likely want to be able to get. What programs and users jointly presuppose about these accumulative processes
in each other is just as much a part of their common ground as the other presuppositions they have in common.

Many of the changes that occur in human-computer interaction are evanescent, leaving little or no trace of their
occurrence in the environment. There are, of course, notable exceptions to this. Computers are used for—and excel

16 Derek Brock

at—many forms of record-making activities. But in most cases, these exceptions occur as the focus of an activity rather
than in the doing of it. Evanescence is a property of most joint activities (see Table 1), and humans have evolved a
sophisticated cognitive resource for coping with it, namely their memory.

People use their memory to maintain a cumulative record of their understanding and perceptions of an activity’s
events. In joint activities, the events that are public are usually taken to be part of the participants’ common ground—
a record they presumably share of the activity’s public events so far (see Table 4). But there is more to it than
this. People’s internal record of an activity’s events so far is usually rich with inferences, annotations, interpretation,
intention, and meaning, all of which are products of their cognition as they participate in an activity. Between people,
these features of cognition are taken for granted; among other things, people rely on each other to think about what
they are doing and to recognize evidence of thinking in each other. In their joint activities with computers though,
these cognitive aspects of common ground can be, and usually are, broken in several ways.

History mechanisms in conventional user interfaces, for instance, are not maintained by programs for their own
use. Instead, they exist as a tool for users who may wish to undo or repeat an action or see an explicit record of what
they have done. Invariably too, the actions recorded are only a portion of what users might reasonably expect to be a
record of the activity’s public events so far. Even so, since programs do not ordinarily make internal use of the history
they do maintain, users cannot rely on the bulk of their own analysis of these seemingly conspicuous events to be
shared by programs for the mutual purpose of advancing the task—their joint activity. This is just one example. More
often than not, programs’ actions are simply event-driven—evanescent, reflexive reactions to their users’ inputs. Their
behavior is effectively unconsidered, and users inevitably must accommodate this handicap in the common ground of
their joint activities with computers.

The situation between users and computers—the deficiencies in their common ground—is not likely to change
appreciably until programs are more consistently designed to simulate the cognitive skills people bring to their par-
ticipation in joint activities. How this is done may not be as important as whether or not it is done in the first place.
Potentially, any number of computational strategies can be employed in user interfaces to simulate cognition to some
level of fidelity—arguably, any methodology used to achieve an “intelligent” user interface qualifies. Simulated cog-
nition in user interfaces adds to the potential common ground in programs’ activities with users. But sophisticated
capacities are also merited only to the extent that they make genuine contributions to interaction designs.

In one sense, using software is somewhat like reading a book. The user-reader and the software’s designer-author
engage in a joint activity whose communicative medium is spelled out in the material design of the software’s user
interface. Design concerns in this perspective are essentially issues of common ground that are relevant in what
amounts to a written or preproduced setting (see Section 2.2). However, in a broader and more important sense, the
interactive experience itself is more like a joint activity with the software itself in a face-to-face or copresent setting.
Another way to understand the nature of this dual interpretation of an interaction design is to state it in terms of what
Clark calls layers of action (also discussed in Section 2.2). In this view, the user and the software’s designer carry out a
multilayered joint activity through the medium of the software’s user interface. In the primary layer of action, common
ground is established between the user and the designer through the medium of the design of the user interface. In
the secondary layer, which transcends the literal circumstances, common ground is established between the user and
the running program. In other words, it is the intention of an interaction design for its user to interact with the user
interface—not with the designer—and to adopt the world of its particular representation of the application task. In this
sense, the more a program'’s interactive capacities appear to have a cognitive basis, the more the line between software
as medium and software as agent blurs, hence the bias of this report—that users and computers are both participants
in the joint activity of human-computer interaction. If this bias is taken seriously, then the notion of common ground
itself should be recognized as the single most important organizing principle in the design of interaction. In any event,
it is arguably paramount in the design of simulated cognition for interactive purposes.

3.2 Simulating Cognition in a User Interface
In this and the following sections, I describe an effort to simulate an interactive cognitive function in an application

user interface. The aim is to explore how, as a participant in the joint activity of its application task, a user interface
can more consistently support the accumulation and use of task-related common ground with its user.

A Language Use Approach to Human-Computer Interaction 17

There are several working premises in this effort. Since common ground is fundamentally a cognitive process,
simulating its computational nature merits an approach through cognitive modeling. This leads to the notion of
a task model, which functions as a simulated cognitive representation of the task from the application’s point of
view. Part of this representation must include a representation of what the user knows about the task, which is
sometimes characterized as a user model. In the context of this work, the user model more specifically corresponds to
a representation of potential and established common ground with the user. Just as people have personal and shared
representations of their joint activities with others, the full task model can be thought of as the user interface’s personal
representation of the task, and its user model as its shared representation of the task (compare with the material at the
end of Section 2.3.2).

Cognitive modeling in this effort requires an application task analysis that not only addresses representing the task
as just described, but also takes into account any interactive cognitive functions envisioned for the user interface. Since
common ground between two agents must be established interactively (Section 2.5.2), at a minimum, the task model
must be designed to interpret task-related events and to share its knowledge of the task with the user. Thus, in the
work presented here, interactions between the user and the application are treated as joint actions of communication
as described by Clark (see generally Sections 2.4 and 2.6.2, as well as the discussion of action ladders at the end of
Section 2.6.1). In particular, participants in joint actions involving meaning and understanding carry out subordinate
joint actions in cognition—the intention behind a signal is formed cognitively by the one presenting the signal, and
the process of recognizing and construing that intention is carried out cognitively by the audience for the signal. As
a participant in carrying out the application task, the user interface, through its task model, must be able to simulate
these specific cognitive functions in its joint actions with the user.

As suggested in Section 3.1, making a pronouncement on how a set of task-related cognitive skills should be
simulated in a user interface (i.e., what specific methodology or technique should be employed for this) is not part
of the agenda in this effort—ultimately any computational technique that works well can arguably justify its use.
The chief rationale for using cognitive modeling to simulate cognition in the work presented here is to approach an
ostensibly cognitive process—common ground—from the principled perspective of a theory of cognition. The material
that follows covers the modeling and implementation issues faced in this effort and presents a functional picture of
how the resulting system works. Specifically, a description of how a small application prototyped in Common Lisp
has been modified to work with a particular cognitive modeling environment, and how the task model’s function is
conducted with respect to the actions and needs of the user and the application is given. Throughout, references
are made to the elements of Clark’s theory of language use as joint action the modeling work strives to address. In
particular, the work is concerned with cognitively modeling elements of the application task that have the potential to
be established as common ground between the application and the user, and can be used by the simulated cognitive
function in the user interface to aid the user in understanding and carrying out the task itself. Only a portion of the
application task has been modeled sufficiently enough to credibly demonstrate the stated goals of this effort, but two
examples of how common ground is used by the system are discussed in detail in Section 3.5.

The working system is called a task model tracing system because cognition is simulated by “tracing” application
events in the task model. No attempt is made to model the use of natural language. Instead, the interaction medium—
functionally, the language used by the user and the computer—is the standard point-and-click paradigm supported by
graphical user interfaces, in which users communicate predominately with a mouse and a keyboard and the interface
communicates predominately with actions, options, and statements in its display. In particular, the task model inter-
actively shares its knowledge of the task with the user through reports, composed of predetermined sentences, and
similarly predetermined advisories that are presented in the form of checkbox lists. All of this material is displayed
in a special window designated for this purpose; how and when the material is chosen for display is a function of the
task model.

Since the task model tracing system represents an effort to simulate cognition in a user interface for purposes of
human-computer interaction, the focus in the work presented here is not on issues of common ground in the design of a
conventional user interface, but on the problem of computationally modeling common ground between the application
and the user as an accumulative process (see Section 1.2).

18 Derek Brock

The task model tracing system comprises four components: the host application, the cognitive modeling environ-
ment (a computational simulation of the human cognitive architecture), the task model, and some additional constructs
needed to round out the system. The general relationship between these components is shown in Fig. 1. The host appli-
cation implements an information environment for carrying out an imaginary planning task. The cognitive modeling
environment can be thought of as a processor for the task model, which itself can be thought of as a kind of cognitive
program. The remaining component groups together all of the modifications and additions to the system and the user
interface that permit the user to interact in a direct manner with the task model, and provide the task model and the
application processes with access to each other. To appreciate how the components of the task model tracing work to-
gether, it is first necessary to understand the basic features of the cognitive modeling environment and the implications
this environment has for the design of the task model.

Host application Cognitive modeling environment
(implements task environment) (processes task model)

Modifications and Task model

additions (cognitive model of task)

Fig. 1 — The four components of the task model tracing system

3.3 ACT-R

ACT-R (Anderson and Lebiere, 1998) is one of a small number of unified theories of cognition that have emerged
in recent years as a result of what is sometimes called the “information processing revolution” in the cognitive sciences
(Simon and Kaplan, 1989). Also called cognitive architectures, unified theories of cognition are more or less complete
proposals about the structure of cognition that strive to account for the full range of cognitive behavior with a single,
coherent set of mechanisms (Newell, 1990; Anderson, 1993). Computer implementations of cognitive architectures
provide what are effectively structured programming languages for simulating and modeling cognition. ACT-R has
been used to provide compelling accounts of high-level cognition in a wide variety of circumstances including navi-
gation, scientific discovery, language comprehension, and problem solving (Anderson and Lebiere, 1998). A central
claim of the theory is that cognitive skills are realized by production rules—if-then constructs that account for many
of the procedural characteristics of cognition (Anderson, 1993)—and as such, ACT-R is an instance of a more general
computational framework known as a production system. Production system architectures have emerged as a dominant
tool for complex cognitive performance modeling (Klahr et al., 1987) and have proven to be well suited for cognitive
research in human-computer interaction.

ACT-R differs from other production system-based theories of cognition in a number of ways that make it a
good choice for studying certain aspects of common ground in a cognitively augmented human-computer interaction
environment. Among these differences are the way it views knowledge and the control of attention, and the way it
accounts for the performance characteristics of memory. Conceptually, the theory functions at two levels, one symbolic
and the other subsymbolic. Information is processed at the symbolic level in the sense of how it is acquired, used, and
stored. At the subsymbolic level, information is processed in neural-like terms using continuously varying quantities
that determine its availability and speed of access, among other things. Since cognitive modeling in ACT-R takes both
of these processing levels into account, a sketch of each, relevant to the work in this report, is given in the next two
sections.

A Language Use Approach to Human-Computer Interaction 19

Procedural memory (production rules)

Conditions: Actions:

~»Goal chunk Create chunk

—-Other chunks Push, modify, or pop goal chunk
(Physical action

AN

.

{match) ! (push) (push)

4

Goal chunk (pop)

Environment

S

(match)

LIFO goal stack

(perception)

—

Declarative memory (chunks)

Fig. 2 — A diagram of most of the features of the ACT-R architecture at the symbolic level

3.3.1 Procedural and Declarative Knowledge

Figure 2 shows that ACT-R divides knowledge into two kinds of symbolic memory—declarative and procedural.
Declarative knowledge is essentially the kind of conceptual or factual knowledge people are aware of knowing and
are usually able to recall. In ACT-R , declarative knowledge is represented in a form known as chunks, which can be
thought of as independent, coherent nodes of information. Chunks are stored in a “long-term” declarative memory and
are modeled notationally as patterns of slots that are assigned values that are themselves other chunks, for the most
part. A given, arbitrary pattern of slots defines a generic chunk type, and instances specify this in a special reserved
slot known as an isa slot. As an example, the user, from the computer’s point of view in an ACT-R model of a segment
of human-computer interaction, might be represented as an instance of a “participant” chunk as follows:

user
isa participant
label “user”
attend no

The chunk is given an arbitrary name, in this case the word user, and its type, participant,is shown in its isa slot. This
chunk type happens to have two other slots, a label slot and an attend slot, and their values in this instance are also
shown in the example.

In ACT-R, chunks are created, stored, modified, and retrieved through the action of production rules. Produc-
tion rules (or simply “productions”) are symbolic representations of procedural knowledge—essentially, behavioral
skills—that are stored in a separate long-term procedural memory. They are called “rules” because each production
pairs a set of conditions with a set of actions:

20 Derek Brock

if

C (a set of conditions) is true
then

carry out A (a set of actions)

A rule’s conditions, which are simply a template, are always expressed in terms of a privileged chunk, known as
the goal, and other chunks in declarative memory that may be related in some way. ACT-R orchestrates the focus of
attention in cognition through a last-in-first-out (LIFO) stack mechanism that is managed by sequences of production
rule actions. The architecture operates in cycles. To become the current goal, a chunk must be created, or retrieved
from declarative memory by a production as one of its conditions, and then “pushed” onto the stack. At the start of
each cycle, ACT-R first chooses a production that matches the current goal and then tries to match the production’s
other conditions against the chunks in declarative memory. This process, called conflict resolution, is described in
more detail in Section 3.3.2. As soon as a corresponding set of matching chunks is found, they are retrieved and
bound to the production, and the instantiated result is “fired” (its actions are carried out); this finishes the cycle.

Several of the actions a production can take are shown in Fig. 2. In addition to creating chunks and selecting goals
by pushing chunks onto the stack, productions can also modify and remove (or “pop”) the current goal. When a chunk
is popped off of the goal stack, ACT-R returns it to declarative memory. Cognitive models must also be able to interact
with their environment, and ACT-R handles this by allowing the modeler to add chunks directly to declarative memory
(simulating perception) and by allowing productions to simulate “physical” actions through Lisp function calls.

ACT-R’s distinction between declarative and procedural representations of knowledge fits well with the general
characterization of common ground as both knowledge and process emphasized in this report (Sections 1.1 and 3.1).
The knowledge component of common ground—information that is presumed to be shared by the participants in a
joint activity—corresponds to a declarative representation in ACT-R. The process component of common ground—the
cognitive skills participants employ to accumulate and use the knowledge component—corresponds to a procedural
representation in ACT-R. For instance, in Clark’s characterization of the three parts of common ground in a joint
activity at any moment—initial common ground, the current state of the joint activity, and the public events so far
(Section 2.3.2)—each part can be represented as a body of declarative knowledge, in the form of chunks, that is shared
by the participants. The cognitive skills that each participant employs from moment to moment to update, maintain,
and use this body of shared declarative knowledge he or she possesses can be represented in procedural form as a set
of production rules.

A similar correspondence can be seen in the terms Clark uses to formally describe the nature of common ground
(Section 2.5.1). Here, both the notion of a shared basis and the notion of a proposition that is common ground for
the members of a community are well suited to being represented declaratively as chunks. The role of indication—
the idea that a shared basis indicates a proposition to all of the members of the community)—is ideally represented
procedurally as a production rule. ACT-R’s goal stack facilitates the relationship between these two representational
forms of knowledge. When a declarative, shared basis is salient and in focus for the participants in a joint action, it is
their procedural knowledge that carries out the cognitive process of inference that indicates the declarative proposition
taken to be in their common ground. In ACT-R, this relationship between knowledge and process in common ground
can be modeled by pushing a chunk corresponding to a shared basis on the stack, making this shared basis the current
focus, or goal. Production rules that match this goal then represent processes of inference that lead to propositional
elements of common ground. Both declarative knowledge and procedural representations of cognitive skill are needed
to provide a computational account of common ground in ACT-R .

3.3.2 Rational Analysis and Subsymbolic Processing in ACT-R

Although the acronym ACT has a number of variants, the R in ACT-R stands for Anderson’s rational analysis of
cognition, a theory that takes cognition’s adaptive capacities to be an optimized evolutionary response to the statistical
character of the environment (Anderson, 1990). Using Bayesian estimation techniques, correspondences between the
environment’s demands and performance in a wide variety of cognitive phenomena, including recall, categorization,
causal inference, and problem solving, can be understood as rational behavioral adaptations when analyzed in terms
of cost vs benefit. The insights of this theory and its use of Bayesian methods are the basis of ACT-R’s account of how

A Language Use Approach to Human-Computer Interaction 21

the cognitive architecture functionally processes information at its subsymbolic level. There, chunks and productions
are each subject to continuously varying levels of activation, which reflect estimations of their importance based on
previous use.

The consequences of subsymbolic processing in ACT-R are expressed at the symbolic level in the process of
conflict resolution, mentioned previously in Section 3.3.1. At the beginning of each cycle, any number of productions
may happen to match the current goal, but in ACT-R they are ordered in terms of their expected gain. This ordering
is called a conflict set. Each production’s expected gain is a measure of how likely the production is to be useful in
completing the activity represented by the goal chunk, based on past experience and an estimate of how much effort
the activity will take to complete. The first production in the conflict set gets a chance to match the remainder of its
conditions, but if this fails for some reason, the next production is immediately considered and so on, until the process
is resolved. Each production’s success or failure in the conflict resolution process is then taken into account when
ACT-R begins the next cycle.

The process of matching a production’s nongoal conditions during conflict resolution is also subject to a probabilis-
tic measure—the activation levels of candidate matches in declarative memory. ACT-R’s strategy for assigning these
values reflects the circumstances of each chunk’s current and past use. Chunk activation values serve two purposes in
conflict resolution—to order chunks so that the most active match for each condition is chosen and to determine the
effort needed to retrieve the matches, which is used in the estimation of expected gain.

Although the specific details of ACT-R’s subsymbolic computations are different for production rules and chunks,
at a grosser level, they have certain characteristics in common. A central feature of the theory is that these quantities are
“learned” (increased) through use and are subject to decay over time. In particular, learned chunk activation vatues,
which reflect frequency and recency of use, can be used to represent the salience of declarative representations in
memory. Salience plays an important role in joint actions—it enables the participants in joint actions to find solutions
in their common ground to the problem of coordinating each of the subordinate actions that contribute to their joint
acts of communication (see Clark’s “principle of joint salience” in Section 2.4.1; see also Section 2.6.1). An example
of how this subsymbolic measure of salience can be used to indicate a proposition in common ground is given in
Section 3.5.

To work (i.e., to run), ACT-R models must be processed by the ACT-R simulation of the human cognitive
architecture—much like computer programs require particular operating systems and processors to run. ACT-R’s
cognitive modeling environment can be configured to work with or without most of the components of the theory’s
subsymbolic processing. The advantage of this arrangement is that cognitive models can be developed in stages or
can be organized to address specific considerations. In part, both of these approaches have been taken in developing
the model presented in this part of the report (i.., Section 3); however, not all of ACT-R’s subsymbolic processing
mechanisms have been utilized. The aim has not been to create a highly plausible cognitive model but to appreciate

a number of computational problems user interfaces face in simulating the cognitive demands of common ground in
interactions with users.

3.4 The Task Model Tracing System

This section takes up the considerations raised in prototyping a system in which a limited set of task-related cogni-
tive skills is simulated in an application user interface with an ACT-R model. The widespread complaint that comput-
ers lack ordinary cognitive skills suggests that users recognize an inherent psychological and social dimension in the
proposition of human-computer interaction (compare with the notion of “social interaction of machines” in Norman,
1992). The current work is motivated in part with this in mind, and by the conjecture that if users want applications to
be able to reason as they do, perhaps fundamental cognitive principles should underlie the computations.

There are certain practical shortcomings to an approach through cognitive modeling. For instance, like most
other production system architectures, ACT-R is written in Common Lisp, and this makes it difficult to integrate
with systems written in other programming languages. The options are to communicate through an interapplication
communication protocol or to work entirely in Lisp. The latter route ensures more flexibility and is taken here, but this
has also meant that the entire system incurs the slow performance of an interpreted language. Another difficulty lies

22 Derek Brock

in the fact that cognitive modeling is not easy. It is, at best, an inherently iterative process and remains a difficult and
intuitive, if principled, art. While the working model presented here succeeds in demonstrating the basic proposals of
this report, substantially less than the full application task has been functionally modeled.

The task model tracing system is comprised of a prototyped application called a “mission planner,” which im-
plements an imaginary military planning task and an ACT-R model of a portion of this task. The ACT-R model
implements the task-related cognitive skills the system is designed to simulate and is the part of the system referred to
as the “task model” throughout this chapter. The working system also incorporates a copy of ACT-R’s cognitive mod-
eling environment, which is generally referred to as “ACT-R.” The modeling environment is needed both to process
the task model and for its command set, which is used to control the model’s operations and to modify its state. The
system is called a “task model tracing” system because task-related events are “traced” in the task model as they occur.
The system’s goal is to support a user interface that can accumulate and use task-related common ground with its user.
As a domain, task-related common ground is taken to be knowledge of and about task-related interactions and the task
itself. In general, the task model keeps track of the user’s activities and the status of the task by monitoring application
events. The user can also interact directly with the task model through an additional window, which augments the
mission planner’s user interface (Section 3.4.2). In this “task model interaction window,” the user can prompt the
task model to share its task-related information and make recommendations, which the user can then have the task
model carry out. Actions carried out by the task model are also taken to be elements of task-related common ground.
The task model interaction window and a number of additional programming constructs required to coordinate the
operations of the task model and to facilitate code-level interactions between the application and ACT-R round out the
task model tracing system’s components.

Most of the effort required to implement the task model tracing system has been devoted to addressing the prac-
tical issues raised in deriving the task model. Typically, ACT-R models implement all or most of the declarative and
procedural knowledge of interest and then use the architecture to model interactions among these elements. Ordi-
narily, knowledge that is implemented beforehand is derived through an iterative process of task analysis and model
building, and this is the approach that has been taken here. Hence, the declarative and procedural representations
that initially make up the task model tracing system’s base of task-related knowledge more accurately represent the
system’s potential common ground with the user. The task analysis process must take into account a large number
of considerations—the level of task-related detail, the interaction model, the user model, what the task model’s com-
putational functions are, and how these functions will be synchronized with the activities of the rest of the system.
These and other related concerns are discussed in the sections that follow, beginning with a description of the mission
planning task.

3.4.1 A Brief Description of the Application Task

The application’s task domain is very roughly that of a military strike planning tool. Conceptually, the user is
presented with a scenario in which a limited supply of tanks, fuel, and munitions must be used to engage one of three
target destinations at various distances from a base of operations in an imaginary geography. All necessary information
about miission resources and the destinations is available to the user in the planner’s user interface. Many of the factors
the user must take into consideration in planning a mission are interdependent, and to further complicate matters,
tanks face a number of probabilistic risks of failure in both traveling to and engaging destinations. The application
user interface, most of which is shown in Fig. 3, utilizes a standard point-and-click paradigm for user interactions
and is composed of several dialog-box style windows in which the user can study and select destinations, equip and
allocate tanks, and evaluate the success or failure of a mission. The user’s most fundamental objective is simply to
“g0 on a mission,” and to do this, he or she must choose at least one destination and allocate at least one tank. Only a
portion of the task represented by this objective has been thoroughly modeled in the work presented here—specifically
that portion that entails the process of choosing a destination for the mission. Other facets of this objective have been
partially modeled, but are not intended to be represented as complete.

3.4.2 Task Model Functions

The task model has several functions it must be able to carry out if the task model tracing system is to participate
with the user on a cognitive level in the conduct of the mission planning task as a joint activity. In the language use

A Language Use Approach to Human-Computer Interaction 23
_Supply_Peot
E)pen Supply Pool and Tank Outfitter Dialogg
Munitions: (qty avail)
Use tank outfitter dialogs o issue tanks:
Heavy-tank munitions: 450
Light-tank munitions: 960 Available Tanks: Mission Tanks:
L2 [&y — 40}
Fuel Depot: [» Allocate to Mission ﬂ
Fuel tanks: 4 - << Retract « =
o L ks) T
Fuel (galtons): 3330
R Select a destination for the mission:
Dehicles: Tank Status
Heauy tanks: 9 Cholces: Assignment: LIGHT-TANK L1
Light tanks: 2 Desert Camp > Rdd > Mountain Village Yehicle status: Ready
River Town Miles traveled: 0
<< Remove <<
Musitions supply: 120
Heavy Tank Qutfitter Netmunitions value: 120
. . (Map window) g[Go on Mission E Fuel tanks: 2
Munitions: Fuet (g,)
. Fuel Tanks: % Fuel (gals.): €M
49 HJ2T3 4] 89 Mission Report: Efficiency (mitgal): S
48 88 Payload weight (Ibs.): 3370

Report of Mission—1:
LIGHT-TANK L1 heading toward Mountain Uillage
N rom it >
Maximum paytoad (tbs): 3500 Thzre asgsgbg;c?eseﬂgaud
LIGHT-TANK L1 encountering ROCKS at mile 139
LIGHT-TANK L1 encountering RIVER ot mile 141
LIGHT-TANK L1 engaging VILLAGE Mountain Village at mile 143
LIGHT-TANK L1 defeated by VILLAGE Mountain Uillage at mile 143

Reset Issue Tank HEAUY=TANK H1 heading toward Mountain Uillage
from Buse <{at mile 0>
There are obstacies ahead

HEAWY-TANK H1 encountering ROCKS at mite 13@
HERUY-TANK Ht encountering RIVER at mile 141

Current paylaad (Ibs): 5370

Light Tank Outfitter T S 2yt of fuel at mite 141
Munitions: Fuel (gallons): |
120 Fuel Tanks: 90
119 1 3 a4 89
118 88
Defeated: Spent tanks:
Masimum payload (Ibs): 3500
L1 [
Current payload (Ibs): 3370 w1
Reset l Issue Tank | I

Destination Status

Mountain Village

Assassments:

Current value: 200
Risk of defeat (%6): 15
Location:

Traveling distance: 144
Miles from base: 144
Obstackes:

RIYER

Mileg from destination: 3

Risk of yehicle loss (%). 6

Cost{miles of fuel): 30
ROCKS

Miles from destination: 5

Risk of vehicle loss (%): 3

Cost (miles of fuely: 15

Fig. 3 — A screenshot of the prototyped mission planner application

approach to human-computer interaction emphasized in this report, interactions between the user and the computer are
viewed as acts of communication. The user and the computer have strikingly dissimilar and limited ways of signaling
each other in the task model tracing system’s graphical user interface—the user’s presentations are limited to the
semantics assigned to the point-and-click format provided by the system, and the system’s presentations are limited
to what it can display and do—but an interaction model of this kind is nevertheless a language. In Clark’s enlarged

definition of language use, all forms of signaling must be included (Section 1.1).

In each of its interactions with the user then, ideally the task model tracing system is taken to be a participant
in a joint action in which it is either the addressee or the presenter* (i.c., signaler). In joint actions such as these
between people, common ground is determined through subordinate joint actions the participants carry out in cognition
(Sections 2.6.1 and 3.2). Thus, the task model’s function is to simulate the cognitive portion of the system’s part in
each joint action that, depending on its role as addressee or presenter, respectively completes or prompts the user’s

cognitive actions.

For instance, when the system is the addressee, the user’s input is taken to be the first part of a joint action the
system is obliged to complete. As part of this obligation, ideally the system must do more than just receptively

*The term presenter is used here simply to denote the addressing party (i.e., the addressor). It is not specifically intended to connote the level
of presenting used by Clark as a technical term to designate one of several subordinate actions a speaker (i.e., a presenter) carries out in a ladder of
joint actions (Section 2.6.1, p. 13). Presenter is used here in favor of speaker or signaler because it best connotes both the demonstrative actions

and display actions generally seen in human-computer interaction.

24 Derek Brock

(and reflexively) process the user’s input—a response that corresponds most closely in Clark’s action-ladder view of
joint actions (Section 2.6.1) to the subordinate, lower level joint actions of executing-and-attending and presenting-
and-identifying, and is only a portion of what a joint action should entail. If the system-as-addressee is to fully
complete the joint action the user has started, it must also carry out its part in the ladder’s upper level, subordinate
joint actions—computationally, the task model must recognize what the user is signaling and consider what the user
is proposing. These are characteristically cognitive actions that people regularly expect their addressees to carry out
in joint activities. Ideally, it should be no different in user interfaces. Similarly, when the system is the presenter,
the explicit action it takes in the form of what it displays or does is taken to be the first part of a joint action that
requires the user’s participation to complete. Using the common ground it presumably has with the user, the system
through its task model should simulate a cognitive component in this action that prompts the user’s recognition and
consideration of what (proposals) the system is signaling. Figure 4 illustrates the task model tracing system view of a
human-computer joint action schematically.

Presenter’s part: Addressee’s part:
H level 4 . .
(cognitive actions) Proposing Considering (cognitive actions)
level 3
Signaling Recognizing
: level 2 p
(explicit actions) { Presenting I:eH ' Identifying (receptive actions)
Executing -~ Attending

Fig. 4 — A schematic representation of a joint action with the task model tracing system

Before looking more closely at the task model’s functions in joint actions when the system is the addressee and
when it is the presenter, it should be noted that the task model tracing system’s interaction model is essentially a
nonmixed initiative design. By “nonmixed initiative,” it is meant that all task-related activities must be initiated by
the user, and that neither the application nor the task model are empowered to make independent decisions about
the task and/or take actions on their own. In joint activities, the term initiative attempts to capture the notion of
who initiates or proposes a joint action that takes the form of a joint project (Section 2.6.2) and whose goals are
dominant (compare with Clark’s dimension of governance in Section 2.3). Initiative is usually mixed in joint activities
between people—at appropriate or even inappropriate times, any participant can take things in a new direction. In
human-computer interaction, mixed initiative is seen whenever a system is designed to interrupt users (McFarlane,
1998) or otherwise act autonomously in interactive circumstances. (See Cohen et al., 1998 for a survey of issues in
modeling initiative.) Since interruptions and other unprompted or unclear behaviors can be disorienting for users, it is
generally recommended that users always be made the initiators of actions in interaction designs (Shneiderman, 1998).
This recommendation has been followed for user interactions in the task model tracing system’s interfaces—both the
mission planner shown in Fig. 3 (p. 23) and the task model interaction window, which is described later in this section
and shown in Fig. 5(b).

In the task model tracing work described here, the system is taken to be the addressee whenever the user initiates
an interaction with the mission planner or with the task model directly in the task model interaction window. In its
role as addressee, the task model takes each user interaction with the the mission planner and the system’s response
(essentially, application events and feedback) as a new element of common ground. So, for example, when the user
clicks on a widget in the mission planner’s Mission Composer window, such as the Map Window button in Fig. 3
that opens up a map of the task’s imaginary geography (Fig. 5), the task model must note this and the result (the
display of the map window), because these events are a basis for information that should now be common ground for
both the user and the system. In addition, the task model should make note of any task-related implications of these
events (i.e., propositions) that may reasonably be known or of use to the user. (Compare these functions of the task
model with Clark’s formal definition of common ground given in Section 2.5.1; also, see the material at the end of
Section 3.3.1.) The most important implication of this sort that the task model keeps track of (or traces) in the task
model tracing system is an assessment of the status of the task. In doing this, and in keeping track of interaction events
in the mission planner when the system is the addressee, the task model, through its initial and established common
ground with the user, maintains a record of the second and third parts of the joint activity’s common ground at the
moment—respectively, the current state of the joint activity and the public events so far (Section 2.3.2).

A Language Use Approach to Human-Computer Interaction 25

When the user initiates an interaction directly with the task model in the task model interaction window, he or she
is considered to be prompting the task model to participate in the task as a presenter. The task-model-as-addressee
in this case does not specifically note the user’s prompt as a basis for common ground, but instead takes it as its cue
to change roles and make a presentation. Ideally, task model presentations should be of use to the user and support
the advancement of the task. With this in mind, but noting that each class of presentation behavior impacts on the
complexity of the task model in terms of its information requirements and its organization, the task model tracing
system implements its presentations in three forms—reporting, advising, and doing. The first two of these task model
presentation functions are display-based and are always presented at the same time in the task model interaction
window (Fig. 5(b)). Each is intended to give timely, task-related information to the user, as well as to reinforce each of
the three parts of task-related common ground at the moment. Through its reporting function, the task model presents
the user with a summary of task-related events that are relevant to the current status of the task; this corresponds to a
selective representation of the public events so far as warranted by the current status of the Jjoint activity. The system’s
initial common ground with the user—the first part of the task’s common ground at any moment—is revealed in its
reports through incidental references to elements of the user interface, specific interaction techniques, and features of
the task, etc. Much the same is true for the presentations made by the task model’s advising function. In this form
of presentation, the task model attempts to contribute to the advancement of the task by recommending task-related
actions the user may wish to take, based directly on the task model’s assessment of the current state of the Jjoint
activity, and implicitly on its representation of the public events so far. Further, these recommendations are presented
in an interactive format that allows the user, at his or her discretion, to have the task model carry them out individually.

Map Window Task Model Interaction Window

Summary:

123 Homtein Yillange Your task is to plan a mission and go on it.

x The Mountain Viliage is selected in the Destination Choic
3 . Z es List.

[Desert Camp

The Open Supply Pool and Tank Outfitter Dialogs Button is
&9 no longer enabled.

3 ‘}' You've opened the Light Tank Outfitter dialog window.
Vou've opened the Heavy Tank Outfitter dialog window.
Y You've opened the Suppiy Pool window.

River Town

(_prompt_7j,

Paossible actions to take (check one):

wt

1\%. [A destination must be assigned for the mission.

[J You can inspectany destination by double-clicking on its
name.

[consider epening the map.

(a) (b)

Fig. 5 — Screenshots of (a) the mission planner’s map window and (b) the task model interaction window

The task model’s ability to carry out actions it recommends constitutes its doing function. Carrying out task-
related actions for the user is just as much a form of presentation as are user inputs because the actions themselves
signal transformations in the task activity the participants can (and should) observe. Any such task-related event—not
just the ones induced by the user—should serve as a shared basis for common ground between the user and the system.
Consequently, as part of its doing function, the task model must be able to keep track of its own interactions with the
mission planner and the resulting application events for essentially the same reasons that it keeps track of those due to
the user—to maintain a current record of the system’s task-related common ground with the user.

In summary, in its function as addressee, the task model simulates the cognitive component of the task model
tracing system’s joint actions with the user principally by keeping track of the importance of task-related application
events and by assessing the status of the task. Computationally, these simulated cognitive actions are intended to

26 Derek Brock

correspond to and complete those carried out by the user as part of the joint action that corresponds to each of his
or her interactions with the mission planner. Conversely, in its function as presenter, the task model simulates the
cognitive component of its presentations (as the first part of a joint action with the user) by using its representation
of the task’s common ground at the moment as a basis for summarizing the progress of the task and recommending
appropriate courses of action. Further, the task model draws on elements in this same representation of common
ground when it carries out any of its recommendations for the user. How the task model simulates these cognitive
functions, both in terms of knowledge and process, and a number of related methodological issues are covered in
detail in the next three sections, beginning first with a description of the methodology of model tracing and its use in
the task model tracing system.

3.4.3 Model Tracing

It was mentioned early in Section 3.3 that a central claim of the ACT-R theory is that cognitive skills are realized
by production rules (Anderson, 1993). There is a sizable body of empirical evidence to support this—as an early test
of the psychological reality of production rules, ACT-R was used as the basis of a series of successful, computer-based,
intelligent tutoring systems (Anderson, 1987). In these systems, production rules were taken to be the basic grain size
of cognition, and the operational premise was that the skills being tutored ideally could be decomposed, cast, and
monitored at this level. The tutors used a methodology called “model tracing” to follow the student’s efforts and to
compare them, production by production, to the idealized model of the skill being taught. Mistakes were recognized
as erroneous productions that were similarly traced in a representation of the student, and this allowed the system to
intervene with suggestions and explanations.

As interactive systems employing cognitive simulations, these tutors effectively had many goals in common with
the work presented in this chapter. Not only were the tutoring systems in bona fide partnership with students, making
the lessons legitimate joint activities, but much of the content of their interactions, and therefore their common ground,
was cognitive in nature. Although the authors of these systems were in pursuit of a somewhat different agenda, the
model tracing paradigm proved to be an elegant scheme for keeping the production-level computations of their lesson
models congruent with student actions.

In the work described here, the model tracing paradigm is similarly used to monitor the user’s and the system’s
task-related activities in the task model-—although, not necessarily on a production-by-production basis and not nec-
essarily for the same imperatives, hence the modified term task model tracing. However, there are many parallels. Just
as a model tracing tutor employs an idealized representation of a skill and possible mistakes in its lesson model of the
student, so the task model tracing system employs an idealized representation of the application task and the user’s
conceptual view in its task model. In both systems, model tracing is a reactive process—computations are carried
out in response to user inputs—and in both, model tracing serves a dual purpose—to maintain an up-to-the-moment
account of the status of the activity and to support the system’s task-related interactions with the user.

Task model tracing and model tracing diverge mainly in terms of their agendas and their view of cognition. Unlike
model tracing, task model tracing has no pedagogical agenda—the user is “always right” as a matter of policy (at least
in this work) and the task model’s only purpose is to assist the user in accomplishing the application task. Nor is task
model tracing an attempt to verify a theoretical account of cognition. Interactions, and not productions, are taken to be
the natural grain size of activities in application user interfaces; interactions inherently vary in scope and expressive
power, and a trace of several productions may be required at the task model level to account for all that is implied by
a given interaction. Task model tracing differs from model tracing in one further respect—what is traced. Only the
student’s cognition is of interest in model tracing—the computer’s role in the tutoring process is viewed as part of the
instructional framework but not of interest in what is being modeled. In contrast, the goal in task model tracing is to
model the public and inferred status of the task as a joint activity being pursued by both the user and the computer.
Consequently, the actions of both are monitored and traced in task model tracing.

3.4.4 Task Analysis and Task Modeling

Task analysis lies at the heart of model tracing schemes, and task model tracing is no exception. Generally, the term
is taken to mean an analytical process of decomposing a procedural task and specifying its parts. Task analyses are

A Language Use Approach to Human-Computer Interaction 27

used by practitioners in many fields for a variety of purposes—to formalize a process, to explicate a poorly understood
procedure, to determine the requirements of a design, and so on. In model tracing, and more generally in research-
oriented cognitive performance modeling, task analysis is often used iteratively, first to make an educated guess at the
requirements of a particular cognitive skill, and then to revise or refine the corresponding representation, realized in
model form.

The goal of task analysis in task model tracing is to gather all of the information needed to create the task model—a
cognitive model of an application’s task, represented from the perspective of the application. The task model’s purpose
is to provide the application with a capacity to simulate task-related cognitive activities that may be of use to the user.
To carry out this function, the task model must be able to work at a number of different levels, mapping task-related
events onto a working knowledge of both the application’s implementation of the task and the user’s concerns, and
supporting direct interactions with both the user and the application (Section 3.4.2). The scope of the task analysis
process in task model tracing is consequently large and entails a number of conceptually different analyses (described
as “phases” of analysis below). And, once the actual process of task modeling has begun, these analyses need to be
revisited iteratively as the organization of the model takes shape and other practical considerations arise.

Task analysis for the purpose of cognitive modeling is essentially a process of decomposing information into
declarative and procedural knowledge. If, for example, part of a task requires the user to press a button, a first pass
representation of this would likely entail representing the button as a chunk, including perhaps its state of being pressed
or not, and specifying an applicable set of production rules in simple “if-then” form. Since production rules represent
when and how declarative knowledge is changed, the condition side of these rules would specify various declarative
contexts, and their action side would show how the button press impacts other declarative representations, such as
chunks corresponding to the immediate function and/or semantics of the button. From the user’s point of view, there
might also be other conceptual consequences of the button press, such as an understanding that a parameter for an
indirectly related subtask has been changed, and this would be analyzed in much the same way.

For the application user interface to usefully simulate a set of task-related cognitive skills, the task model must
first possess a core of background knowledge about the task and how it is implemented by the application. A basic
representation of this knowledge can be developed from an analysis of the application itself, and this should be the
object of the task analysis’ first phase. In particular, the goal here is to characterize the task’s procedural dimensions
in terms of the implementation. For instance, if selecting a particular item is a procedural requirement of the task,
the analysis must specify this in terms of how it is actually done. Building small, exploratory models of individual
segments of the task with ACT-R is a useful adjunct to this phase of analysis.

To support a shared perspective with the user as it traces the rudiments of the task, the model must also be able to
recognize and represent what is being done in terms the user can easily understand. Consequently, the next phase of
the task analysis focuses on characterizing the task from the user’s point of view. The job here is to develop an easily
grasped conceptual representation of the task’s components that can be unified with the task model’s implementation
knowledge. For instance, the model’s task-level representation of the item selection event used as an example in the
previous paragraph would likely be characterized in terms of the item’s name, its role in parameterizing the next step
in the task, and so forth. The user’s characterization of this event, on the other hand, could be that it completes a
milestone in the task (if in fact it does), and it is important for the task model to represent this. Goals, strategies, and
meaningful sequences of interactions are all useful abstractions for users. Modeling the task in this way necessarily
involves a degree of subjectivity, but the challenge is only to establish a viable degree of initial common ground with
the user on these terms. Even a simple, carefully considered analysis can accomplish this.

The task implementation and user view models derived up to this point must next be unified and cast as a set
of production rules and chunks to be processed by ACT-R. In anticipation of this effort, the task model’s functional
organization needs to be worked out. As addressee and presenter, the task model must be able to follow and reason
about the task on an event-by-event basis, and contribute to the task’s advancement when the task model tracing system
is prompted for its input (Section 3.4.2). Although these are conceptually different functions, they are nevertheless
interrelated. In particular, realizing and bounding the task model’s functions in its role as presenter will largely depend
upon the computations it carries out as addressee. More to the point, these functions, depending on their role, must be
designed to work with either the mission planner or the task model interaction window. For instance, the task-related

28 Derek Brock

knowledge derived up to this point will form the core of the task model’s addressee function and must be able to
respond directly to specific application events, for it is in this portion of the task model as a whole that the system’s
basic model tracing activities will occur. Hence, an organizational process must be imposed on the task model to
coordinate the actions of its individual functions and to enable it to work as a whole with the rest of the system’s
application and user interface components. Simulating this as an additional cognitive process in ACT-R would go well
beyond the goals of this work. The compromise employed here is to organize the task model into a partial hierarchy of
goal-based stages that are invoked and managed directly by the application and the task model interaction window as
appropriate. How this scheme works and is implemented is described in detail in Section 3.4.5. The model tracing core
of the task model’s addressee function is the first of these stages, and it’s processing must be prompted by events in
the mission planner. These factors must be taken into account as the knowledge derived so far is unified and rendered
as an ACT-R model.

Additional procedural and declarative representations are needed to support and stage the participatory actions of
the task model’s presentation functions, and deriving these representations is the object of the remaining phases of
task analysis. The task model’s participatory actions—the presentation functions given in Section 3.4.2—require the
model to be able to carry out three separate activities:

1. Reporting: assessing and summarizing the status of the task,
2. Advising: anticipating and recommending relevant actions the user may wish to consider taking, and
3. Doing: performing recommended actions at the user's discretion.

Each of these functions supports a different interaction goal and plays a role in establishing common ground with
the user as well as advancing the joint activity of the task. All of the task model’s presentation functions depend
directly on its representation of common ground in the task, but are only needed when the user prompts the model
directly for its input. Consequently, the task model stages its primary function—following the task—and its presen-
tation functions—reporting, advising, and doing—separately. In particular, the model follows the task in response to
application events and makes presentations in response to direct prompts. Internally, the task model’s staging mech-
anisms are implemented declaratively as top-level goals that are operated on procedurally by stage-specific rule sets.
Externally, the system’s control of these mechanisms is supported with additional application and user interface code.

In addition to staging, though, another modeling strategy is needed to orchestrate the task model’s presentations. At
issue is how presentations are to be tied to the status of the task. In ACT-R, only production rules can carry out actions,
so the statements displayed by the task model’s reporting and advising functions must be produced by the application
of procedural knowledge to the current state of the model’s declarative memory (Section 3.3.1). In practice, this
means that the model must contain a substantial number of production rules for making presentations. When the task
model is prompted, it must determine which matters warrant summary and/or advice, and then fire the productions that
match these matters and the task’s current status. Later, when the status has changed and the model is prompted again,
some of the same matters may warrant another presentation, but an entirely different set of productions will apply. In
short, the model must contain many productions for each matter that warrants presentations—potentially, one for each
change in the task’s status! A more important consideration, though, lies in the problem of distinguishing one status
from another. If the task is sufficiently represented, its status at any point will correspond to the state of the model’s
declarative memory. However, specifying each state in terms of the unique combination of task-related declarative
representations that defines it is both unwieldy and impractical. A different approach is needed, and the one used
here assigns names to individual task states and represents the global notion of the task’s current status declaratively.
Transitions are then managed by a corresponding set of production rules that are staged by the model as part of its
addressee function after it has staged its primary subfunction of following the task. Figure 6 depicts the principal
components in this process. From a modeling perspective, this strategy for representing task states and the status of
the task makes it possible for an individual presentation rule that applies to a particular task state to be tied to it simply
by specifying its name.

The third phase of task analysis is concerned with identifying task states and their corresponding transition rules.
Before covering the process, though, recall that in the second phase of task analysis, the aim is to abstract important
task-related concepts, such as goals and strategies and sequences of interactions, into representations that are likely to
be familiar and easily grasped by the user. The rationale for making these representations a part of the task model’s

A Language Use Approach to Human-Computer Interaction 29

Declarative memory Procedural memory
chunks representing state-changing events: production rules changing task’s current status:

e t;{if goal = @) and status = [2 |
chunk representing the task’s current status: andnew-state =[3], .
then status = [3 Jand...}

status IZ! t;{if goal = @) and status = [2 |
and new-state = s
chunks representing task states: then status = and...}

Fig. 6 — Representing task states and the task’s current status in the task model. State-changing events and task states are repre-
sented as chunks in the task model’s declarative memory. An additional chunk representing the current status of the task references
the appropriate task state chunk in one of its slots. When a state-changing event occurs in the application, the chunk corresponding
to it in the task model is made the goal. A specific set of production rules (designated t; and t; in this illustration) then carry out
the appropriate transition. (The actual process is more elaborate than this simplified version indicates.) These actions are staged
by the model as part of its addressee function. The task states shown in this illustration correspond to the notion of task junctures
described later in this section on page 30 et seq.

reasoning process is common ground—the model is obligated to share the user’s view if its participation in the task
is to be merited (Section 2.5.1). However, it should be understood that none of these representations are ever placed
directly before the user. Instead, these are the very matters with which the task model’s presentation functions must
work. Each serves in the task model proper as an anchor for all of the model’s presentations on the matter it represents
declaratively. In turn, each of these presentations is anchored to a task state. In the mission planner, for instance,
choosing a destination for the mission is a fundamental part of the task, but only the notion of the destination needs
to be represented declaratively in the task model proper to anchor the larger model’s before and after presentations
on the matter. Thus, evidence of the model’s accumulated common ground with the user is exposed through its
presentations. Figure 7 shows how the anchoring mechanism works. Each type of presentation function implemented
in the task model tracing system addresses a different concern. The reporting function is intended to corroborate the
user’s understanding of the task, in part, with a summary of the public events so far that is relevant to the current status
of the task, and the advisory function is intended to advance that understanding with appropriate recommendations.
Hence, before the destination has been chosen, the model advises that choosing a destination is something that needs
to be done; after the choice has been made, the model confirms the significance of the event in its summary of the
status of the task.

Identifying task states, then, is essential for making relevant presentations. In the language use view, it is a
fundamental part of representing common ground in the joint activity of a human-computer interaction task. If the
representations developed in the first two phases of task analysis correspond most closely to the notion of initial com-
mon ground, modeling the task’s status corresponds more closely to the notion of the current state of the joint activity
(Section 2.3.2). In the application’s user interface, both the user and the task model share an external representation
of their joint activity (Section 2.3.2 and Table 5) that offers compelling evidence for their individual, but presumably
mutual representations of the activity’s—and hence the task’s—status. Its states, as they occur, become a matter of
public record—a part of what each participant presupposes (in theory) are the joint activity’s public events so far.
Consequently, an analysis aimed at identifying the task’s states and their corresponding transition rules should begin
with an analysis of how these states correspond to the states and transitions implemented in the underlying application.
A practical concern faced in this next phase of task analysis, though, is to develop a strategy for defining task states
that keeps their number in check and yet provides the task model with a viable basis for its participation in the joint

30 Derek Brock

Declarative memory Procedural memory
chunks representing task states: production rules for reporting:
r,{if goal =(A)and status =1 |...then...}
lz r.{if goal =(B)and status = [1 |...then...}
« T1,{if goal=(A)and status=[2 |...then...}
chunk representing the task’s current status: » rififgoal=Qand status=[2] . then...}
r+{if goal =(B)and status = [3 |...then...}
status E production rules for advising:
a;{if goal = and matter:. ..then...}
chunks representing presentation matters: a;{if goal = and matter = (C)...then....}
» a,{if goal = [2] and matter =(C)...then...}
‘ @ + ay{ifgoal=[2 Jand matter:@...then...}
@ @ a.{if goal = [3 |and matter=(D)...then...}

Fig. 7 — Anchoring production rules to presentation matters and the current status of the task. In addition to task states and the
current status of the task (see Fig. 6, p. 29), matters that may warrant presentations—conceptual elements of the user’s view of the
task—are represented as chunks in the task model’s declarative memory. The task model’s display-based presentation functions
(reporting and advising) are made up of many production rules (designated r; and a, in procedural memory in this illustration).
Each rule is anchored the subject of its presentation and/or when it should be presented by specifying the corresponding presentation
matter and task status chunks as a part of its condition for firing (i.e., in its if clause). Note that when a matter or the task’s status is
used as the task model’s goal is a function of how the task model tracing system implements the presentation process (see material
on the task model’s presentation functions at p. 34 et seq. in Section 3.4.5). Depending on the goal (not shown in this illustration),
the productions marked with an asterisk are those that are currently applicable to the state of the task model’s declarative memory
as it is depicted here.

activity. The approach adopted for task model tracing is to decompose the task into a set of goal oriented steps that
are taken to be of interest to the user. It should also be recognized that interacting with the application is conceptually
different from accomplishing the task—if, for instance, the application provides more than one way to accomplish any
task-related step, there will not be a one-to-one correspondence between the two state spaces. Depending on the user
interface, an analysis of this nature can quickly become a large project, and the challenge is to manage its complexity.
It may not be possible or desirable to exhaustively determine all possible correspondences. In addition, the user may
find some task states subjectively more significant than others—a point that is underscored by Clark when he describes
how people keep track of activities by forming annotated records and outlines (Section 2.3.2).

The strategy developed here for identifying and modeling task states, introduces the term fask juncture to denote
any application state that is part of a direct path to the task’s goal. An example of a juncture in the mission plan-
ner would be the application state reached by performing the actions required to choose the mission’s destination.
Junctures do not correspond to application states that are not on a direct goal path. Retrieving information about a
destination may help the user to decide whether or not to choose it, but placing the application in this state does not
move the task forward. An application’s set of junctures are taken to be its task’s conceptually significant states.

Task junctures are generally order dependent, but can also be order independent within groups. Figure 8 shows
four examples of how application states can correspond to task junctures. All of the junctures shown in the first three
examples (Fig. 8 (a, b, and c¢)) are order dependent, whereas some of those shown in the last example (Fig. 8 (d)),
specifically junctures J; through J7, are not. The ways in which application states combine, relative to their order
independence, define the corresponding task junctures. In the simplest case (Fig. 8(a)), application states are linearly
ordered and, so, correspond directly to order dependent task junctures: for linearly dependent junctures J; and J; 41, it
is necessary to first reach J; in order to then reach juncture .J; 1, and so on. The next two examples (Fig. 8(b and c))
show how order dependent junctures correspond to application states in other circumstances. In Fig. 8(b), application
state s;, which can be reached from s;, is not task-related. In Fig. 8(c), application states s; and s; are functionally
equivalent in terms of the task.

A Language Use Approach to Human-Computer Interaction 31

(a) (b)

tar @ —@

tar w @

JO(sstart) J] (57,') JE(Sgoal) JO(Sstart) Jl (Si = S]) J2(5goal)

(d)

JD(Sszart) N (Si | Sj) J2(5goal) Jﬂ(sstart) Jy - Jr JS(Sgoal)

Fig. 8 — Four examples of how application states s may correspond to task junctures J (compare example (d) with Fig. 9)

Task junctures can also occur in groups corresponding to application states that are locally order independent. In
general, for a set of n such states, there are n? — 1 corresponding task junctures. In the example shown in Fig. 8(d),
the three states s;, s;, and s; must all be reached before Sg0al» the goal state, can be reached. Yet, each can be reached
directly from s;4,; as well as from each other. Hence, these three application states are locally order independent. In
this example, task juncture J, corresponds to s,;4-:. But since s;, 5, and s;; are order independent, they correspond
to a group of 32 — 1 junctures that are determined as follows. Junctures J; Jo, and J5 correspond to having only
reached the respective, single states of s;, s;, and sx directly from ss;4-:. Since, from each of these junctures, two
more application states must still be reached—in any order—before Sgoal €an be reached, the next three junctures, J4,
Js, and Jg, respectively correspond to having reached the first of these two remaining states. Put another way, task
junctures J4, Js, and Jg correspond to having reached, respectively, the two states s; and sj, s; and sy, and s; and
sy, regardless of order. (For instance, J4 corresponds to having reached state s; first and then s, or having reached s;
first and then s;; either way, state s; must be still reached next before Sg0al Can be achieved.) Finally, then, juncture
J7 corresponds to having reached all three of s;, s;, and sy, again, regardless of order. Note that junctures J;, Js, and
J3 as a group are order independent; so are J4 and J; as a group when approached from J;; and so on. The transitions
in Fig. 8(d) are shown more explicitly in Fig. 9.

The conditions that determine when each task juncture has been reached must also be identified and cast as pro-
duction rules. With these rules in place, the task model is able to represent the situation at any point in the user’s
performance of the task in the form of a juncture. Managing complexity in this phase of analysis, though, is essen-
tially a process of compromise. A particularly useful approach can be to identify junctures hierarchically, identifying
first the major components of the task and then working through specific application states at progressively lower
levels. It is also important for the task model to represent application states that are not task junctures (such as s; in
Fig. 8(b)), especially when they are germane to the user’s understanding of the demands of the task. One strategy for
modeling such states is to treat them as conceptual elements of the task states to which they are connected; an example
of this will be discussed in Section 3.5.

32 Derek Brock

Ji(si) —— Ja(si&s;)

J()(Ssmﬂ,) —_— Jg(ﬁj) J5(sj&sk) —_— J','(Si&ﬁj&sk) Jg(ngl)

J:;(S;;) —_——— J.:(s,‘&sk)

Fig. 9 — A different view of Fig. 8(d)

The object of the fourth—and last—phase of task analysis is to develop the task model’s substantive presentations.
In the present work, the model’s reporting function is composed of production rules whose actions include direct
output of summary text. The advisory function has been organized differently—it is composed of production rules
that can be fired. Once these components of the larger task model have been developed, they will constitute the task
model’s actual presentations. In practice, this phase is the most iterative and interwoven analysis of the four because
it depends heavily on the emerging organization of the task model and a variety of practical considerations inherent
in the application environment. Examples of how these presentations appear and are used in the mission planner are
given in the next section.

3.4.5 A Description of the Full System in Operation
Conceptually, the task model tracing system described in this chapter is composed of:

1. A host application: the prototyped mission planner.

2. ACT-R : the ACT-R simulation of the human cognitive architecture.

3. A task model: the declarative and procedural representations of the application task, derived iteratively through
task analysis and mode! building, which are processed by ACT-R .

4. “Glue”: supplemental user interface and system code and routines necessary to permit the user to interact with
the task model and to permit the task model to participate in the task.

Except for the task model, which is written in the ACT-R cognitive modeling language, each of these components is
written in Common Lisp, and all function together in the Lisp environment as a single, unified process.

The host application’s user interface is made up of several windows, all but one of which are shown in Fig. 3
(p. 23). The remaining application window, which shows a map of the mission’s geography, is shown in Fig. 5(a). The
other window shown in this figure (Fig. 5(b)) is the “task model interaction window.” This window, which permits
the user to interact with the task model, is not part of the application proper but augments its user interface and is
available to the user at all times. When the system is launched, only the large “Mission Composer” window and the
task model interaction window are opened. The application’s other windows are opened during the course of the task
through button presses or by double clicking on individual items in the Mission Composer’s tank and destination lists.

3.4.5.1 Basic Model Tracing Activities

As the user interacts with the application and application processing occurs, the application also drives the task
model tracing process. It does this each time a task-related event occurs with a glue routine called update-mode/ that
runs ACT-R (and hence, the task model). Ordinarily, ACT-R is run until the model has completed the immediate
process of updating its representation of the task. This activity of tracing application events in the task model is
repeated steadily until the user chooses to interact with the task model through the task model interaction window
(described below).

To stage both its model tracing function and its other activities, the task model uses a special hierarchy of goals.
The topmost goal in this hierarchy is a chunk of type hold that carries the current task juncture with it in one of its

A Language Use Approach to Human-Computer Interaction 33

slots. This is the same chunk shown in Figs. 6 and 7—Ilabeled “status” for clarity—that is used by the task model to
represent the current status of the task. The hold chunk is privileged because it is never removed from the goal stack.
It is used instead to indicate when running the model should be stopped. Thus, whenever the task model is at rest in
the context of the full task model tracing system, ACT-R’s goal stack is empty except for the hold chunk, which is
deliberately left on top. To run the model, the update-model routine relies on a subordinate glue routine called stop-
at-hold. This routine repeatedly cycles the model using ACT-R’s run command whenever the hold chunk is not on top
of the stack. To ensure that the model will run, the update-mode! routine must always push another goal onto the stack
before it invokes stop-at-hold. The goal it installs is a chunk of type bookkeeping. This and two other chunks, one of
type assessment and the other of type report, make up the next level in the model’s stage-related goal hierarchy; this
hierarchy is shown in Fig. 10. An instance of each of these chunk types is used to initiate a different stage of the task
model’s activities—the bookkeeping and assessment stages carry out the task model’s responsibilities in its role as
addressee, and the report stage initiates the task model’s presentation functions.

stage-level goals

bookkeeping chunk
top-level goal .
addressee function stages
hold chunk assessment chunk '
(task model at rest)
report chunk presentation function stage. . .

Fig. 10 — Task model stages and their relation to the top-level goal and the task model’s addressee and presentation functions

In order for the task model’s representation to remain fully abreast of task-related developments in the application,
it is necessary for the model to have essentially unrestricted access to the application itself. This issue was raised at
the beginning of Section 3.4. If the host application and ACT-R were to operate in different language environments, it
would be necessary to factor the entire application so that it could be fully accessed and controlled by the task model
via an interprocess communication protocol (see, for instance, Ritter and Major, 1995). Since this approach also would
have required the host application to be implemented from the ground up, it was not pursued in the present work in
order to focus more directly on the issue of modeling cognitive aspects of common ground in a human-computer
interaction task.”

Although the task model is effectively embedded in the application, it is nevertheless a separate process. It gains
access to the application by maintaining copies of task-related application objects in specific slots set aside for this
purpose in its declarative representations of these conceptual entities. When a task-related application event occurs,
it is incumbent on the application to both run the task model and to present it with copies of any application objects
involved in the event. This is accomplished one object at a time through the update-model! routine and a chunk of type
code-reference that is used by the bookkeeping stage solely for this purpose. In addition, each time the application
invokes the update-model/ routine, it must also identify the chunk in the task model that corresponds to the object it
is presenting by specifying its label—a slot value that is associated with all such conceptual representations in the
model. With this information, the task model tracing process can begin. The update-mode/ routine does two things
with the information it has received from the application—it assigns the copy of the application object it has received
to the task model’s code-reference chunk, and it locates the chunk whose label it has been given and modifies it to be
attended to by the model in the upcoming round of model tracing. It then uses a subordinate routine called push-chunk
to push the bookkeeping chunk onto ACT-R’s stack and invoke the stop-at-hold routine to run the model.

Two stages are involved in the basic model tracing activities the task model carries out in its role as addressee-—the
“bookkeeping” stage and the “assessment” stage. The latter is devoted primarily to handling transitions between task
junctures. In the bookkeeping stage, the chunk specified by the application that is to be attended to is immediately
identified and bound to a slot in the bookkeeping chunk. This same chunk (not the bookkeeping chunk) is then made
the model tracing goal by pushing it onto the stack. If it has not already been done in an earlier round of bookkeeping,

* An interprocess communication approach was, in fact, initially taken in my earliest task model tracing work. Few if any fully factored systems
were found to exist.

34 Derek Brock

the application object carried by the code-reference chunk is also bound to a corresponding slot in the model tracing
goal. The core model tracing production rules then take over. During this phase, the model typically pushes and
pops an additional goal or two as needed to fully carry out its tracing activities. The production rules involved in
this process use the model tracing goal’s copy of its corresponding application object and possibly those of other
chunks to verify the immediate state of the application. Junction transition events are also identified in this stage. The
application represents these events explicitly by creating declarative representations for them and passing each event’s
label to the update-model routine. A corresponding set of bookkeeping stage production rules intercepts these chunks
when one of them has been made the model tracing goal and primes the model declaratively to change junctures in the
assessment stage that follows. (Figure 6 shows the state-changing process.)

As the bookkeeping stage completes its model tracing activities, any task-related goals that have been pushed onto
the stack are removed, including the model tracing goal. This restores the bookkeeping goal to the top of the stack. The
model tracing goal will be needed again during the assessment stage, so it is now bound to the assessment stage’s goal
chunk (the assessment chunk). The bookkeeping stage completes its activities by “cleaning up” the bookkeeping
and code-reference chunks (binding their critical slots to neutral values, which readies them for the next round of
bookkeeping) and then replacing the bookkeeping goal chunk on the stack with the newly configured assessment
goal, signaling the beginning of the assessment stage.

The task model now turns its attention to assessing its representation of the task’s status and to managing its
support for the presentation functions. The bookkeeping stage’s model tracing goal is pushed back onto the stack
and, at the same time, a copy of this chunk is added to an external list called the *report-list* that is used by one of
the presentation functions’ glue routines in the “report” stage (see below). The reinstated model tracing goal is then
evaluated by a specific set of assessment stage production rules. All but one of the rules in this set are anchored to
the current task juncture, and all are part of a larger set of rules that represent transitions between task junctures in
the task model. (Essentially, the production rules denoted t; and t; in Fig. 6 represent members of this set.) When
the goal represents a transition event, the task juncture indicated by the corresponding transition rule is installed in
the privileged hold chunk—the task model’s topmost goal—by a further set of assessment stage rules dedicated to
this purpose. If no transition event has occurred, a fall-back rule—the one not anchored to the current juncture—is
applied. In either case, the model tracing goal is then popped, and the assessment stage completes its work by cleaning
up its goal chunk and any other utilitarian chunks it has used in the process. The assessment chunk is then popped,
restoring the hold chunk to the top of the stack.

3.4.5.2 Presentation Functions—Reporting, Advising, and Doing

Up to this point, only the task model’s passive activities have been described. To interact with the task model,
the user presses a button labeled “Prompt” in the task model interaction window (Fig. 5(b)). This button invokes a
glue routine called prompt-task-model that is one of several used to support the task model’s presentation functions.
Prompting the model results in a two-part display of information in the task model interaction window. Both the
model’s reporting and advisory functions are invoked. In the upper half of the window, the model’s report function
presents a summary of the task’s status; in the lower half, the model’s advisory function presents an interactive list of
recommended task-related actions.

Although the task model carries out its model tracing activities—its addressee function—essentially as a running
model, the major part of its presentation functions is carried out in a more fragmented manner as an iterated series
of short model runs coordinated by glue routines. The prompt-task-model routine begins the presentation process by
calling a subordinate routine named report-task-status. This routine initiates the model’s “report” stage by pushing
the last of the model’s three stage-related goals—the report chunk (Fig. 10)—on the stack and running the model
with the stop-at-hold routine. A dedicated production rule immediately flags this goal to indicate that the report stage
is in progress and then replaces it on the stack with the chunk that corresponds to the current task juncture. When
stop-at-hold commences the next ACT-R cycle, a production rule in the report stage’s procedural memory matches
the juncture and issues a corresponding sentence-length statement that broadly summarizes the task’s status and then
pops the goal, exposing the hold chunk. The summary sentence is not immediately displayed, but is stored in a buffer
called *report-buffer* which is displayed all at once at the end of the report stage.

A Language Use Approach to Human-Computer Interaction 35

With the hold chunk now on top of the stack again, stop-at-hold ceases to run the model, and control is returned
to the report-task-status routine. A subordinate routine named get-reports is used next to generate any additional
summary statements that may be relevant to reporting the current status of the task. The get-reports routine does this
using the *report-list* of model tracing goal chunks that is managed by the assessment stage (see above). These chunks
are the presentation matters depicted in Fig. 7. One at a time, each chunk in the list is pushed onto the goal stack, -
and the model is run via the stop-at-hold routine. This allows the report stage’s procedural memory to match the goal
and issue a summary statement, just as was done at the beginning of the report stage with the current task juncture.
If for instance in Fig. 7, the matters named A and C have both been added to the *report-list* during the assessment
stage, and the current status of the task is 2, as is shown, then the production rules r; and r, marked with asterisks in
procedural memory would apply in succession during this process. In general, the report stage’s procedural memory is
composed of rules that handle all of the model’s juncture dependent and juncture independent reporting. Each goal is
immediately popped after it has been matched. Any corresponding contributions to the status report are also buffered
in the *report-buffer* list.

When the get-reports routine completes its work, control returns again to the report-task-status routine. The hold
chunk is again on top of the stack, and now report-task-status initiates the end of the report stage by pushing the report
chunk back onto the stack and running the model. Another dedicated production rule unflags the report goal, indicating
that the report stage is now complete, and then removes it from the stack. With the hold chunk exposed again, control
now returns to the prompt-task-model routine, which immediately displays the contents of the *report-buffer* in the
upper portion of the task model interaction window, completing the actions of task model’s report function (Fig. 5(b)).

The prompt-task-model routine turns its attention next to orchestrating the task model’s advisory function. It does
this by calling a subordinate routine named anticipate. In the task model described here, the advisory function is
conceived as a subset of the model’s production rules that match the hold chunk when it is the goal and the model
is at rest. Since the hold chunk carries the current task juncture with it in one of its slots, an advisory function rule
that corresponds to a particular task state only needs to specify the corresponding juncture in its goal condition. The
anticipate routine takes advantage of this design by forcing ACT-R to generate its conflict set (Section 3.3.2) without
running the model. Again, for instance, if in Fig. 7 the current status of the task is 2, as shown, the production rules
a3 and a, marked with asterisks in procedural memory would make up this conflict set. The advisory statements that
the model presents for a given state of the task are carried by the corresponding productions in a technical feature
known as their “documentation string.” Once the conflict set has been generated, the anticipate routine extracts each
production’s documentation string. These are then collectively passed to a subordinate routine called print-anticipation-
explanations that handles their display as a group of checkboxes in the lower half of task model interaction window

(Fig. 5(b)).

The task model’s advisories are presented as a suggestion list of recommendations that the model anticipates will
be informative and will contribute to the advancement of the task. Each recommendation also represents an action the
model can carry out for the user at his or her request. Collectively, these actions, and the procedural and declarative
representations in the task model that are needed to carry them out, constitute the third of the task model’s presentation
functions—its “doing” function (see Sections 3.4.2 and 3.4.4). The print-anticipation-explanations routine configures
the advisory list, as a practical matter, so that only one recommendation can be checked at a time. When and if the
user wishes to have the task model carry out a recommended action, he or she clicks on its corresponding checkbox
and then presses the task model interaction window’s “Do It” button (Fig. 5(b)), which invokes a glue routine called
force-rule-to-fire.

Since the hold chunk is still on top of the stack, after the force-rule-to-fire routine has identified the production rule
that is to be fired, it sidesteps the stop-at-hold routine, makes the rule known to ACT-R, and runs ACT-R directly for
one cycle. This fires the rule. Each of the production rules that make up the task model’s advisory function, when
fired, immediately pushes a new goal onto the stack that identifies the specific action the model is to carry out next.
After this occurs, the productions that make up the task model’s doing function take over. With the hold chunk no
longer on top of the stack, force-rule-to-fire now uses the stop-at-hold routine to run the model. The action represented
by the goal is then carried out by a specific group of rules that must address the parameters of the action and drive the
application directly. The parameters of the action must be derived from the task’s accumulated common ground, and
an example of how ACT-R can be used to accomplish this is described below in Section 3.5. Driving the application

36 Derek Brock

directly poses a different problem, since the application itself ordinarily drives the task model’s model tracing function
through its invocations of the update-model/ routine. The solution is to suspend the update-model routine’s ability to
call stop-at-hold while the force-rule-to-fire routine is in effect, and to make it the doing function’s responsibility to
carry out the model tracing activities that would otherwise be invoked by the application. This allows the task model
to trace its own task-related actions.

34.5.3 Summary of the System’s Operation

Figure 11 presents a conceptual overview of the task model tracing system, showing how its major components—
the mission planner application, ACT-R, the task model, and supplemental system code and routines, referred to as
“glue”—are related to each other and interact.

Through its task model, the task model tracing system implements an interactive cognitive simulation of a portion
of the mission planning task described in Section 3.4.1. The simulation is an ACT-R process that models the task as a
joint activity in which the system participates in joint actions with the user as either addressee or presenter, depending
on the nature of the interaction. As the addressee, the task model passively accumulates task-related common ground

ACT-R (processes task model)

Application Task model Task model
(“mission planner;” addressee function interaction window
includes system (augments applica-
glue routines) application Bookkeeping tion user interface;

includes system
events Assessment y

glue routines)

presentation functions

. user
Repomng prompts
Advising reports and
suggestions
carrying out . user
user requests Domg requests
User inputs

Fig. 11 — A high-ievel view of the principal components of the task model tracing system. Through its task model, the task model
tracing system implements a cognitive simulation of the process of accumulating common ground with the user in the mission
planner task as an ACT-R process. Using a number of supplemental “glue” routines, the system responds to user inputs in both
the mission planner’s application user interface and the task model interaction window, which augments it. As addressee, the task
model responds to application events by staging its bookkeeping and assessment functions, which carry out the system’s core task
model tracing activities. When the user prompts the task model directly in the task model interaction window, the task model’s
reporting function is staged and then its advising function is carried out. The resulting presentations—a summary of the task and
a suggestion list of recommended actions the task model can also carry out individually for the user at his or her request—are
shown in the task model interaction window. When the user chooses to have the task model carry out a recommendation, it’s doing
function fires the production rule associated with the recommendation, and then carries out the request by interacting directly with
the application. Interactions between the task model and the application are also traced by the task model’s addressee functions
(compare with Fig. 1).

A Language Use Approach to Human-Computer Interaction 37

with the user in response to his or her inputs, which are modeled as presentations. As the presenter, the system’s initial
and accumulated common ground is then used to determine what information should be useful to display and how the
system should proceed if the user chooses to have the system carry out a recommendation it has made.

The task model’s addressee function is driven by the mission planner when task-related application events occur
in response to user inputs. To do this, the application is modified to invoke and supply model-specific, task-related
information to a system glue routine called update-model that serves as a control interface between the application and
the task model. When the task model is run by the update-model routine, its addressee function is orchestrated with a
hierarchy of special goals that stage the system’s basic model tracing activities. The topmost goal in this hierarchy, the
hold chunk, is used to halt the running model and is never removed from ACT-R’s goal stack. This same chunk is also
used by the model to specify the current status of the task as a task juncture (Section 3.4.4). Two of the three goals at
the next level in the hierarchy are used to carry out the addressee function. (The third goal, described below, is used to
stage a presentation function.) During the “bookkeeping” and “assessment” activities staged by these goals, the task
model follows the task and accumulates task-related common ground by tracing application events and updating its
representation of the task and the task’s status.

In addition to working with the mission planner, the user can interact directly with the task model at any time by
prompting it in the task model interaction window, which augments the application’s regular user interface (Fig. 5(b)).
When prompted, this window displays a summary report of task activity and an advisory list of task-related sugges-
tions. The suggestions are recommendations about how to proceed in the task that are presented interactively as a
group of mutually exclusive checkboxes. Individual recommendations can be carried out by the model at the user’s
discretion by choosing one in the task model interaction window and pressing the window’s “Do It” button.

The summary reports and recommendations the task model displays in the task model interaction window and the
set of actions it can carry out for the user collectively make up the task model’s presentation functions. Each of these
functions is carried out by the system in a different way. The report function is staged by the task model using the third
of the three goals under the hold chunk in the hierarchy of goals used in staging the model’s bookkeeping and assess-
ment activities, but is controlled by a glue routine called prompt-task-model! that runs when the task model interaction
window is prompted. The task is then summarized by pushing a series of goal chunks accumulated in the assessment
stage onto the stack and running the task model incrementally; report function production rules that are applicable to
these goals generate each segment of the report. The task model’s advisory function is also coordinated by the prompt-
task-model routine. Presentations of recommended, task-related actions are modeled as a set of production rules that
match the hold chunk—which specifies the task’s status-—when the task model is at rest. Individual rules relevant
to a specific task state are anchored to that state by specifying the appropriate task juncture in their goal condition.
These rules are then identified in the prompt-task-model routine, and their corresponding presentations are displayed
as a set of checkboxes, by forcing ACT-R to passively generate its conflict set—the set of production rules that are
applicable to the current goal. The task model implements its doing function—its capacity to individually carry out
these recommendations—with the help of an additional glue routine, force-rule-to-fire, that forces ACT-R to fire the
associated production rule when the user checks a recommended action and presses the Do it button. This pushes a
goal representing the action the task model is to perform onto the stack, and the running model then carries out the
action directly by interacting with the application as a user. Since all task-related application events are taken to be a
basis for common ground, the task model must also trace its own presentation-oriented interactions with the mission
planner as part of its doing function—just as the user presumably monitors his or her own user inputs. Section 3.5
presents two different examples of how the task model is able to use common ground in its presentations.

3.5 Common Ground in Task Model Presentations—Two Examples

The central premise behind the idea of task model tracing is that human-computer interaction can be usefully
likened to a joint activity between two people. Although in one sense an interactive application is only a tool, in
another sense its computational nature makes it a legitimate—albeit limited——participant in the activity it has been
designed to support. What limits an application more than anything else in this role is a general lack of the kinds
of cognitive skills a person in its place could be expected to possess. Although task model tracing is certainly an
attempt to examine the nature of this limitation through cognitive modeling, the larger concern in the work presented
here is not so much with how such skills can be simulated, as with what skills are needed in the first place. Clark’s
work emphasizes that what participants in joint activities make use of are cognitive skills that support the possession,

38 Derek Brock

accumulation, and use of common ground—and that it is through the exercise of these skills that advancement in
joint activities may be characterized. As part of their common ground, people count on each other to possess such
skills and look for evidence of their presence in each other’s presentations in order to capitalize on them. When these
skills are found to be wanting or missing—in effect, when there are imbalances in common ground—communication
is hampered and joint endeavors become problematic. The more capable participant must work harder and be more
resourceful to bring about the goals of the joint activity—and this is exactly the situation a user often faces in the
context of human-computer interaction.

If cognition is to be simulated in a user interface, then it must be designed to do more than simply reason inde-
pendently about the task—to be credible and useful, it must be designed to convey the extent of its common ground
with the user through its presentations. This works at several levels. For instance, it can be assumed that the user is
interested in how the application can assist in performing the task, so the application should be prepared to make this
sort of information readily available. As the task advances, the user’s representation of it as a joint activity steadily
accumulates. It should be easy for the user to corroborate this understanding with the application’s own version of
things—what has been done and by whom. And in instances where an action the user might ordinarily perform has
been delegated to the application, there may be parameters whose salience can be determined on the basis of the accu-
mulated common ground, and the application should choose accordingly. Two examples detailing how the task model
for the mission planner behaves in specific situations, one computationally straightforward and the other exploiting
one of ACT-R’s subsymbolic processing mechanisms, are given here to illustrate how the task model tracing work
described in this report seeks to address these points.

The first example concerns the mission planner’s map window (Fig. 5(a)). This window is not displayed when the
application is first opened, but access to it is available by pressing the Map Window button in the mission planner’s
large Mission Composer window (Fig. 3). When the user prompts the task model directly and the map window has not
been opened yet, one of the suggestions the task model’s advisory function presents is that the user should consider
opening it. Opening the map is not an action that directly moves the task forward, but it is nevertheless an important
part of the application’s support for the task because it presents the user with a useful representation of the mission
geography. Indeed, once the map window has been opened, a task analysis should document that there are a number
of task-related propositions about mission destinations that can now be inferred by the system to be common ground
on the shared basis of what is shown in the map, such as, for example, each destination’s relative distance and compass
direction from the “Base” shown in the lower right corner. Recall that Clark formally defines common ground in terms
of propositions that follow from shared bases (Section 2.5.1). Although this particular information is not currently
a part of the task model, other elements of common ground related to opening the map window are. The act itself
of opening the map window is a public event, with certain characteristics, that readily serves as a shared basis for
propositions that both the user and the system should hold in common after its occurrence. Since the task model
can also open the window when its recommendation to do so is shown in the task model interaction window, one
characteristic of the event after it has taken place is simply who carried it out—the system or the user. Another is
the simple fact that the window is now open. As a participant in the joint activity of the task, how the task model
uses these and other mundane but task-related details in any of its subsequent presentations is important because of
the evidence of common ground this provides for the user. Thus, once the map window has been opened, unless it is
closed again, the system appropriately no longer includes a reccommendation to open it in its advisory list. Instead, to
corroborate the user’s own record of what has transpired—the public events so far—a reference to the window’s having
been opened, and by whom, is presented in the task model’s summary report. If the user has subsequently closed the
map, the summary report reflects this too, but the task model also adds a subsequent recommendation about looking
at the map again to its advisory list.* What is important about this example is that it demonstrates how task-related
common ground can be modeled and used by a user interface. As a shared basis, each characteristic associated with
a publicly occurring application event—in this case, opening and closing the map window—can be identified through
a task analysis. Through further analysis, how these characteristics can be used by both the user and the system to
advance the task can also be identified. A computational model can then be developed for the system’s use of these

*When the user has opened the window, the task model’s summary reports, “You have opened the map window.” When the action has been
carried out by the task model, the report reads, “The system has opened the map window for you.” After the map has been closed, the task model
reports, “The map window has been opened and closed,” and its advisory list recommends. “Consider looking at the map again.” (Note that this is
different from the initial recommendation, “Consider opening the map.”)

A Language Use Approach to Human-Computer Interaction 39

elements of common ground in order for it to participate in the joint activity of the task. When interactions between
the user and the system are interpreted as joint actions, it is computations such as these, which functionally simulate
cognition when the system is the addressee and when it is the presenter, that serve to complement (and complete) the
cognitive skills the user naturally brings to the task (compare with Fig. 4).

The next example looks at how one of ACT-R’s subsymbolic processing mechanisms can be used to compute a
form of salience on the basis of accumulated common ground. The destination assignment is one of the basic decisions
that must be made in carrying out the mission planning task. Before this decision is made, it is possible that the user
will first want to learn something about each of the destinations. In addition to what can be gleaned from the map,
destination status information is available in the application’s ‘“Destination Status” window when the user double-
clicks on any of the names shown in the list labeled “Choices:” in the Mission Composer window (Fig. 3).* If the user
prompts the task model before he or she has chosen a destination by moving it to the list labeled “Assignment:” in the
Mission Composer, the model will recommend in its advisory list that a destination must be assigned for the mission.
In addition, if the Destination Status window has not been opened yet, the model will advise that this can also be done
(these advisories can be seen in Fig. 5(b)). Should the user choose to pursue either of these recommendations through
the task model interaction window, it will be necessary for the model to make a choice for the user. In other words,
both actions have a destination parameter, but which destination should the model choose? The most interesting
solution to this problem from the point of view of the task’s common ground is to choose the destination that is the
most salient on the shared basis of its interaction history—here, when and how many times each destination has been
explicitly part of a user interaction. If there is no such history, then the choice is arbitrary. But if the user has clicked on
any of the destination names in the Mission Composer, and/or has already investigated any of them in the Destination
Status window, these events can be taken to be in the joint activity’s common ground, and their occurrence can be
modeled as a basis, albeit imperfect, for inferring the user’s choice. Thus, to keep track of the cumulative significance
of these events, ACT-R’s subsymbolic chunk activation mechanism (Section 3.3.2) is used by the task model as a
measure of the user’s interest in each of the destinations so far in the task.! As currently modeled, each destination
begins in the task with an equal amount of activation, and these values then vary in time as the model runs according
to their frequency and recency of use. In the eventuality that the user first examines some or all of the destinations,
and then decides to have the system carry out the assignment, the production rule in the task model’s doing function
responsible for parameterizing the action capitalizes on this component of declarative learning in ACT-R’s theory of
memory retrieval and matches the most active destination as one of its conditions. ! In carrying out this part of the task
after the user has presented evidence of his or her disposition in the matter, the system in effect faces a coordination
problem—which destination does the user expect to be assigned?—that should be solvable on the basis of common
ground. What the system and the user require is a coordination device that is jointly salient with respect to their current
common ground, and for the task model, given the limitations of the interaction medium, the most active destination
readily meets this criterion (see principle of joint salience in Section 2.4.1).

The two examples presented here are intended to demonstrate both the viability and efficacy of a language use
approach to human-computer interaction. In the preceding exposition of task model tracing, elements of Clark’s theory
of language use have served throughout as the motivating basis for the design and function of an application task model
written in ACT-R that is used as a means for simulating a set of task-related cognitive skills in the application’s user
interface. In particular, from a design perspective, interactions between the user and the system can be usefully viewed
as a layer of action in which the user and the system are participants in a joint activity whose principal goal is the
conduct of the application’s task. Interactions between the user and the system in the course of this joint activity
can be interpreted as joint actions in which both participants variously assume the roles of addressee and presenter.
To carry out joint actions that involve meaning and understanding about the task—and hence, constitute language
use—the system must be able to carry out its part in subordinate joint actions in cognition with the user that rely on
the existence and accumulation of task-related common ground for their conduct. Ultimately, such joint actions can
be seen as coordination problems that must be solved on the shared basis of common ground in order to advance the

*The Destination Status window opens to the right of the Mission Composer. Also note that all three destination names are initially shown in
the list of destination choices in the Mission Composer.

1+Baselevel” activation values are used.

! Activation values in ACT-R are subject to decay over time. Consequently it is possible for a destination that has been “looked at” very recently,
but only once, to be more active than one that has been looked at a two or three times but several interactions back.

40 Derek Brock

joint activity of the task toward its goals. Within the limited means of its medium for interacting with the user, task
model tracing demonstrates that the requirements and computational nature of such coordination problems can indeed
be approached through careful task analysis, cognitive modeling, and the framework of a theory of language use as
joint action.

4. CONCLUSIONS

The high-level goal of this report has been to raise and examine the notion that human-computer interaction can and
should be viewed as if it were a process of language use. When people do things together, they must act not only as
individuals, but also as participants. To accomplish even the smallest of their social purposes, they must find a way
and agree to coordinate their abilities. Each person’s part in this process is essential, and what emerges from their
cooperation is not just the sum of their individual efforts, but a joint action in which, for people, not only is something
done together, but also meaning and understanding are conveyed and construed. Meaning and understanding are the
cognitive residue, as it were, of such joint actions, and it is the accumulation of this in the form of common ground,
and the cognitive skills that allow people to use it, that makes people’s larger joint activities possible. The way people
carry out joint actions is the way language is used. In anticipation of such skills, many of the features of joint actions
are superficially appropriated in human-computer interaction designs because they are both familiar and easily grasped
by users, and because they can demonstrably promote usability. But this same design strategy can also be the source of
an interface’s usability problems when users are carelessly led into interactions that imply a program’s communicative
abilities are greater than they are, or more commonly, when one or more of the conditions people ordinarily try to
establish when they enter into joint actions—such as a salient basis for what they are supposed to do or what the
program can be expected to do—has been overlooked in the design. While a computer program can only simulate the
actions of a true participant in a joint activity, it is nevertheless important that designers have a thorough understanding
of the full nature of process in joint actions if they are to be justifiably used and reliably modeled in user interfaces.

Even more ambitious then is the impulse to simulate various cognitive abilities in programs and user interfaces
with the aim of making them “intelligent.” With this development, programs gain the potential to move much closer
to meeting the ordinary expectations people bring to their joint activities with each other in face-to-face settings. In
joint activities between people, individuals look for evidence of and rely on each other’s cognitive skills; in many
respects, this is one of the most fundamental tenets of their common ground. Indeed, whenever joint actions between
people involve meaning and understanding, participants necessarily carry out subordinate joint actions in cognition.
When a speaker or the initiator of a joint action means for something to be understood, he or she must first determine
cognitively what that something is and how to signal it. By presenting signals, the speaker then makes an overt
proposal to the addressee concerning specific actions they might carry out together. To understand the speaker’s
meaning and intentions, the addressee must respond, first by identifying the presentation, and then by meeting the
cognitive actions behind the presentation with a corresponding set of cognitive actions in which he or she considers
the speaker’s proposal by recognizing what has been signaled. In prosecuting their parts in these joint actions in
cognition, the participants tacitly rely on a number of elements—shared bases—in their common ground, among
which are their mutual knowledge of the signals and signs involved, their mutual assumption of each other’s cognitive
processing skills and knowledge of behavioral conventions, and their mutual awareness of the events leading up to and
including the state of their joint activity. And since their joint activity advances through the use of their accumulating
common ground, people make a point of using a related set of cognitive skills to try to keep track of what each other
is currently aware of. This then is a short list of the cognitive abilities a program must be able to simulate if it is
to interact with its users on a cognitive level in a way that is similar to how people carry out joint actions with each
other in a language use sense. If the thesis of this document is that a theory of language use as a form of joint action
should serve as a set of first principles for the design of human-computer interaction, then its principal corollary—and
the chief focus in the task model tracing work previously described—is that in simulating cognition for interactive
purposes, it is necessary to computationally model the interaction-related common ground between the user and the
system.

4.1 A Review of the Human-Computer Interaction Design Goals for the Task Model Tracing System

In the task model tracing system, the goal has been to explore the possibilities and ramifications of human-
computer interaction on a cognitive level through two theoretical frameworks: Clark’s (1996b) characterization of

A Language Use Approach to Human-Computer Interaction 41

language use as joint action (the basis for the preceding discussion) and ACT-R, Anderson’s (1998) computational
theory of human cognition. Respectively, these two frameworks, in concert with an ad hoc process of task analysis,
have been used to identify the kinds of processes and representations the system should possess and to implement
these components computationally.

On the basis of Clark’s work, it is claimed here that human-computer interaction can be usefully likened to in-
teractions between people that are characteristic of their use of language (i.e., interactions that rely on meaning and
understanding) in the following ways: computer tasks can be modeled as joint activities between the user and the
computer, and individual interactions can be modeled as individual joint actions between the same. Ordinarily in the
design of software user interfaces, though, it is the nonreflexive, self-directed cognitive components of joint actions
that people are so naturally adept at carrying out that are absent in the system’s assessment of user inputs and in its
computation of responses and addresses. In people, such cognitive acts are carried out in support of their personal
representations of their circumstances and, particularly in their joint activities with others, in support of their com-
mon ground—the knowledge, beliefs, and suppositions people presume to share with each other about a cooperative
activity. Indeed, the raison d’étre for common ground is the ability to carry out the signaling and recognition ac-
tions that are necessary for communication. Since this representation must come from somewhere, for people it is a
perpetually accumulative process. In conventional user interfaces, though, while an event-loop and all of its support
routines manifest how a system uses its representation of its task to respond to user inputs, that representation, some of
which is certainly intended to be on common ground with the user, is functionally inert unless a facility for its growth
and/or dynamic configuration is incorporated into the design. Given this language use analysis of process and rep-
resentational shortcomings in human-computer interaction, it follows that a reasonable approach to more cognizant
interaction designs (i.e., designs that are better able to leverage people’s communicative skills) can be pursued by
modeling task-related common ground as an accumulative process carried out by simulations of the cognitive skills
needed to maintain and use it. Hence, this is the approach taken in the task model tracing system. In particular, the
system’s cognitive simulation takes the form of a task model in which the system maintains its own representation
of task-related matters and, as a conceptual subset, a shared representation of the same that constitutes its common
ground with the user.

Representationally, common ground in the task model is modeled along two dimensions: first, in terms of Clark’s
formal definition of common ground, which bears on how it is represented (an implementation issue), and second, in
terms of Clark’s characterization of the three parts of common ground at any moment, which bears on what is repre-
sented and how it is used (an identification issue). Specifically, common ground is defined in terms of propositions
that are taken by a community to follow from shared bases that are evident to all. And at any moment, this body of
common ground in a joint activity can be thought of as being made up of the joint activity’s initial common ground,
its current state, and the public events related to the activity that have taken place so far.

It is not generally possible for one participant to know or accurately infer what another knows until it has somehow
been made public between the two. As an accumulative process then, much of common ground must be established
interactively. In practical terms, this means that the system must be able to simulate cognitive processes that alter-
natively support and use its common ground with the user. These processes, which represent the system’s cognitive
skills and abilities, can be identified in terms of the roles the system assumes as a participant in task-related joint
actions with the user, both addressee and presenter. In the task model tracing system, these processes are referred to
respectively as the system’s addressee function and its presentation functions, and each is limited to processing task-
related matters. The addressee function updates the system’s representation of common ground by interpreting and
keeping track of the task’s joint actions and the task’s status. The system’s three presentation functions are referred to
separately as its “reporting,” “advising,” and “doing” functions. Each draws on the system’s representation of the task,
and hence its common ground, in order to present information to the user that is in turn intended to support his or her
common ground with the system. Respectively, these functions summarize the status of the task, make task-related
recommendations, and carry out recommended actions for the user.

The product of the cognitive processing carried out by the system’s addressee and presentation functions can best
be characterized in terms of the three parts of common ground. The system’s initial common ground with the user
can be thought of as being represented in the design and implementation of the system’s components, such as its
point-and-click interface, its gamelike task, and the format of its presentations. However, much of this can also be

42 Derek Brock

characterized more pragmatically as potential common ground. Consequently, the role of the addressee function as
it interprets user presentations is to establish initial and new common ground. The latter takes the form of a record
of the task—its public events so far. In addition, by keeping track of the status of the task, the addressee function
maintains a representation of the current state of the joint activity. These representations of the three parts of common
ground, particularly, the record of events and the status of the task, are then used in mixed fashion by the presentation
functions. The summary of the status of the task generated by the reporting function corresponds to a record of the
public events so far that, as modeled, are relevant to the current status of the task. Similarly, the recommendations
offered by the advisory function are predicated on the status of the task. And, when the doing function carries out a
specific recommendation for the user, the system relies on its current representation of common ground to parameterize
the action. When the system publicly carries out task related actions in this manner, it also uses its addressee function
to interpret and keep track of the consequences.

The decision to largely implement the system’s representation of common ground and its simulation of the cog-
nitive processes necessary for its accumulation, maintenance, and use in the form of a cognitive model in ACT-R
was based primarily on the premise of an apparent computational correspondence. Indeed, it may be that the cog-
nitive components of joint actions can best be characterized in cognitive modeling terms, but much more study is
warranted. Computationally, ACT-R’s distinction between procedural and declarative forms of memory is well suited
for representing common ground in formal terms. Both shared bases and the propositions they indicate are naturally
modeled as chunks in the system’s declarative memory. And production rules in the system’s procedural memory
naturally model inferences. Other characteristics of the theory also play a role in the implementation—conflict sets
of production rules that match the current status of the task, for instance, are used to generate the system’s advisory
lists, and subsymbolic learning is successfully used to represent a limited form of salience. Additionally, the runtime
methodology of task model tracing, itself, in which public interaction events are “traced” in the model’s representation
of the task, is derived from intelligent tutoring research in which ACT-R models are used to guide student learning.

In summary, task model tracing demonstrates how a simulation of interactive cognitive skills can be used in a
human-computer interaction design to represent task-related common ground between the user and the system in its
user interface. Of particular concern in the effort is the interpretation of the application task as a joint activity between
the user and the system in which individual interactions are taken to be joint actions that can be characterized as
instances of language use in the sense meant by Clark. Specifically, joint actions in which meaning and understanding
play a role necessarily involve subordinate joint actions that participants carry out in cognition. The ultimate goal in
simulating such cognitive processing, is to better leverage users’ inherent, cognitively based communicative strengths.

4.2 Future Work and Acknowledgements

The notion in task model tracing that a cognitive model can be used to simulate cognitive functions in a user
interface began naively as a solution in search of a problem. On its face, the idea appears to be quite plausible,
but in practice, it has proven to be riddled with difficulties, not the least of which is that, despite its many great
strides, cognitive modeling is not an applied discipline but an active and many threaded area of research in cognitive
science. ACT-R’s characterization of the cognitive architecture is just one of a number of competing theories, each
with a different set of strengths and weaknesses. Among the practical difficulties faced in task model tracing are
problems of scalability—modeling even a portion of the mission planning task has proved to be a highly difficult and
iterative process to get right—and representation. It was the latter problem that led to Clark’s work when it became
apparent that a principled characterization of interaction at the level of cognition was needed as a framework to guide
the identification of the task model’s declarative and procedural elements in the task analysis process. Far deeper
problems, such as procedural learning by example or analogy and the arbitrary representation of a task’s state—
current areas of weakness in ACT-R—have been left as concerns to be addressed at a later time. Certainly, one of the
most conspicuous deficiencies in the system as presented is its lack of a workable solution to the problem of undoing
an action.

Indeed, much remains to be done. Recent architectural refinements in ACT-R point to the need to revisit the
organization and design of the task model with the aim of reconciling the model with new developments in the theory.
In addition, it will be valuable to develop interactive task models of common ground in other tasks for what can
be learned about regularities in the process. Ongoing work on collaboration in human-computer interaction in the

A Language Use Approach to Human-Computer Interaction 43

field of computational linguistics (e.g., Traum, 1998) is actively concerned with models of common ground, and
much of this material remains to be investigated for what it can contribute to future task model designs. Certainly,
a more comprehensive theory of the computational representation of salience is needed. Empirical studies of the
effectiveness of the presentation functions used in the task model tracing system are clearly warranted, and other
interaction and dialogue models for establishing common ground should be investigated. Last, knowledge elicitation
remains a problem for application programming interfaces for purposes of interaction with cognitive simulations, in
part because of a lack of representation standards, and more work certainly could to be done in this area.

As a final note, despite all difficulties, it is my conviction that much of the theory underpinning the task model
tracing work presented in this report is fundamentally sound. Contemporary software user interfaces place the user in
a face-to-face setting in which task-related interactions can easily and convincingly be characterized as joint projects,
especially when the increasingly substantial computational power behind them is taken into account. If the notion of
a system’s usability is a measure of how well its design accommodates the user’s human strengths, then surely future
interaction designs will be keenly concerned with system-level models of interaction in cognition.

This work was supported by the Office of Naval Research. I would also like to offer my deepest thanks to James
Ballas, Helen Gigley, John Sibert, Wayne Gray, Dianne Martin, and Greg Trafton for their input and encouragement.

REFERENCES

Anderson, J. R., and Lebiere, C. (1998). The Atomic Components of Thought. Mahwah, NJ: Lawrence Erlbaum
Associates.

Anderson, J. R. (1987). Production system, learning, and tutoring. In Production System Models of Learning and
Development. Cambridge, MA: MIT Press.

Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Lawrence Erlbaum Associates.
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.
Austin, J. L. (1962). How to Do Things with Words. Cambridge, MA: Harvard University Press.

Clark, H. H. (1996a). Opening plenary: Arranging to do things with others. In Proceedings of the CHI *96 Conference

Companion on Human Factors in Computing Systems: Common Ground. Association for Computing Machinery.
165-167.

Clark, H. H. (1996b). Using Language. New York, NY: Cambridge University Press.

Cohen, R., Allaby, C., Cumbaa, C., Fitzgerald, M., Ho, K., Hui, B., Latulipe, C., Lu, F., Moussa, N., Pooley, D., Qian,
A., and Siddigi, S. (1998). What is initiative? User Modeling and User-Adapted Interaction 8:171-214.

Erickson, T. D. (1990). Working with interface metaphors. In Laurel, B., ed., The Art of Human-Computer Interface
Design. Reading, MA: Addison Wesley.

Grice, H. P. (1957). Meaning. Philosophical Review 66:377-388.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, K. (1998). The Lumiere Project: Baysian user
modeling for inferring the goals and needs of software users. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan-Kaufman.

Kay, A. (1984). Computer software. Scientific American. (September), p.52.

Klahr, D., Langley, P., and Neches, R., eds. (1987). Production System Models of Learning and Development.
Cambridge, MA: MIT Press.

Laurel, B., ed. (1990). The Art of Human-Computer Interface Design. Reading, MA: Addison Wesley.

Maybury, M. T., ed. (1993). Intelligent MultiMedia Interfaces. Cambridge, MA: AAAI Press.

44 Derek Brock

McFarlane, D. C. (1998). Interruption of People in Human-Computer Interaction. Ph.D. Dissertation, The George
Washington University.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press.

Norman, D. A. (1986). Cognitive engineering. In Norman, D. A., and Draper, S. W,, eds., User Centered System
Design. Hillsdale, NJ: Lawrence Erlbaum Associates.

Norman, D. A. (1988). The Design of Everyday Things. New York, NY: Doubleday.
Norman, D. A. (1992). Turn Signals Are the Facial Expressions of Automobiles. Reading, MA: Addison-Wesley.

Rich, C., and Sidner, C. L. (1998). COLLAGEN: a collaboration manager for software interface agents. User
Modeling and User-Adapted Interaction 8:315-350.

Ritter, F. E., and Major, N. P. (1995). Useful mechanisms for developing simulations for cognitive models. AISB
Quarterly 91:7-18.

Sellen, A., and Nicol, A. (1990). Building user-centered on-line help. In Laurel, B., ed., The Art of Human-Computer
Interface Design. Reading, MA: Addison Wesley.

Shneiderman, B. (1998). Designing the User Interface: Stategies for Effective Human-Computer Interaction. Read-
ing, MA: Addison-Wesley, 3rd edition.

Simon, H. A., and Kaplan, C. A. (1989). Foundations of cognitive science. In Posner, M. 1., ed., Foundations of
Cognitive Science. Cambridge, MA: MIT Press.

Sullivan, J. W., and Tyler, S. W., eds. (1991). Intelligen User Interfaces. New York, NY: ACM Press.

Tognazzini, B. (1990). Consistency. In Laurel, B., ed., The Art of Human-Computer Interface Design. Reading, MA:
Addison Wesley.

Traum, D. R. (1998). On Clark and Schaefer’s contribution model and its applicability to human-computer collabo-
ration. In Proceedings of the Third International Conference on the Design of Cooperative Systems (COOP’98).
Rocquencourt, France: INRIA Press. (Clark’s work was sole focus of the workshop at which this paper was
given.).

